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Figure 2-22 Long-term trend in national monthly and annual average PMzs

concentrations (ug/m?) from 2000-2015.

2.5.2.1.2 PMo

Over the longer term PM i has decreased steadily in several urban areas over the past several
decades (U.S. EPA, 2004). Figure 2-23 shows a map of concentration trends in 98th percentile PMio
concentrations between 20032005 and 2013-2015 and Figure 2-24 shows a time series of national PM,
concentrations from 2005—-2014. Most sites in the Eastern U.S. show decreasing concentrations over this

the Rocky Mountains, and the Great Plains that exhibit substantial increases in 98th percentile PMio
concentrations. The observed decreases in PMj, concentrations in many locations are consistent with
similar observations for annual average PM, s concentrations (see Section 2.3 .4), reflecting that PMs s has
accounted for the majority of PM1, in the Eastern U.S. and a large fraction of PMy, throughout the U.S.

PMi, concentrations in a time series of PMio concentrations from network monitoring sites throughout the
UsSs.
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Blue indicates a decrease and red indicates an increase. Percentage increase or decrease is indicated by color intensity of the
circle.

Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2003-2005 and 2013-2015.

Figure 2-23 Increase or decrease in 98th percentile 24-hour PM1o
concentrations between 2003-2005 and 2013-2015.
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Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2003-2005 and 2013-2015.

Figure 2-24 PM1o 2nd highest concentration trends from 2005-2014.

25213 PMig-25

Long-term concentration trends for urban PMio-2 5 are difficult to determine from network data
because PMio 2 s monitoring was too recently implemented. However, some NCore stations began
PMio-2 s measurements in the mid-2000's and IMPROVE measurements of PMi, 2 5 have been operating
even longer, and although IMPROVE sites are mostly rural, some are collocated with CSN sites. These
could be analyzed for long-term trends. In a Los Angeles field study PM;» s decreased by 0.39 pg/m?
from 19 to 15 pg/m’ for the period 1999 to 2009 compared to 0.92 ug/m? for PM: s over the same period
(Cheung et al.. 2012b).
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25214 Ultrafine Particles

Information on UFP concentrations is very limited, confined to very few network monitors that
only recently became operational. Data from field studies have been published periodically, but are
generally insufficient to assess long-term trends of UFP in any location. One exception is § years of UFP
data from Rochester, NY, the particle number characteristics of which were summarized in
Section 2.5.1.1,5 (Wang et al., 2011). On average over the 8 vears that UFP data were collected in

Rochester, total particle number concentrations were greater before 2006 than after 2006. This trend was
most evident for particles between 0.01 and 0.1 um. The difference was described as probably due to
several changes in local sources due to the 2007 Heavy Duty Highway Rule, a reduction in local

industrial activity, and the closure of a nearby coal-fired power plant (Wang et al., 2011).

25215 Chemical Components

Figure 2-25 and Figure 2-26 show changes in the distribution of bulk PM: s components, between
the 3-year period from 20032005 and the 3-year period from 2013—-2015. The most noticeable difference
is the change in sulfate contribution, which dominates PM: s mass in the East during the period
2003-2003, but by 2013—-2015 1t has declined enough that it is no longer the most abundant component in

many Eastern locations.

In the 2009 PM ISA (U.5. EPA, 2009), sulfate is described as the most abundant component of

PM: s on a national average, with nitrate, particulate organic matter and sometimes crustal material also

contributing substantially to PM» s mass. The relative abundance of major PM s components has changed
since the 2009 PM ISA (U.S5. EPA, 2009), with lower contributions from sulfate and greater contributions

of nitrate and particulate organic matter as a result of the steep decline in $SO» emissions (see

the Eastern half of the U.S., where sulfate has until recently been the most abundant PM: s components,

and where SO, emissions have declined the most.

SECTION 2.5: Ambient Concentrations
August 2018 2-77 DRAFT: Do Not Cite or Quote

ED_002220_00002287-00214



AN . SN ;’W \

. \ 2 sulfate 00

. 12 yg m” N 4 | sea-salt % s,
- nitrate \f

oc  EC

Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2003-2005.

Figure 2-25 Contributions of sulfate, nitrate, organic carbon (OC), elemental
carbon (EC), crustal material, and sea salt to PMzs at selected
sites 2003—-2005.
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Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2013-2015.

Figure 2-26 Contributions of sulfate, nitrate, organic carbon (OC), elemental
carbon (EC), crustal material, and sea salt to PMzs at selected
sites 2013-2015.

Figure 2-27 shows PM; s sulfate, nitrate and OC concentrations from 2000-2015 based on
IMPROVE and CSN network data. A steep decline in sulfate concentration is observed, but less change is
sulfate peak also declines to become almost imperceptible toward the end of the period. Based on these
observations, it appears that decreases in SO, emissions (Section 2.3) have contributed to a substantial
decrease in atmospheric sulfate concentrations. The declining sulfate concentrations are also consistent
with CMAQ predictions of the sulfate response to decreasing SO-» emissions. Because sulfate has
accounted for such a large fraction of PM» s mass, the decreasing trend in sulfate concentration is also
(Section 2.5.1.1.4). However, sulfate is not the only PMa s species that exhibited decreasing

concentrations over this period, as described below.
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Figure 2-27 National monthly concentrations (ug/m?) of (a) sulfate, (b) nitrate,
and (c) organic carbon (OC) from 2000-2015.
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1 Long-term trends in PM: s component concentrations from the CSN and IMPROVE networks
2 were also recently described in a series of papers (Hand et al., 2013; Hand et al., 2012a; Hand et al.,
3 2012b). In general sulfate has decreased fairly consistently at rural sites at a rate of —2.7% per year from
4 199210 2010 (Hand et al., 2012b). An even steeper decrease in sulfate concentrations has been observed
5  inthe most recent years, of —4.6% per year at rural sites from 2001 to 2010 and —6.2% per vear at urban
6  sites from 2002—2010 (Hand et al., 2012b). This is similar to the rate of decrease of SO emissions from
7 power plants, and decreases were greater and more linear in the East, where power plant emissions had
8  the greatest contributions to sulfate concentration (Hand et al., 2012b). However, in the winter in the
9  northern and central Great Plains sulfate and nitrate concentrations have increased at a rate of over 5% per
10 year over the period 2000-2010, in spite of decreased nationwide emissions (Hand et al.. 2012a), and
11 sulfate increases m spring in some parts of the West were also observed (Hand et al., 2012b). These
12 increases could not be explained by known changes in local or regional emissions (Hand et al., 2012b). In
13 the SEARCH network downward trends in mean annual sulfate concentrations from 1999 to 2010 ranged
14 from-3.7+ 1.1t0-6.2 £ 1.1% per year. The sulfate reduction was linearly related but not proportional to
15 SO;decrease of -7.9 £ 1.1% per year from 1999 to 2010. Over the same period mean organic matter
16  concentration decreased by -3.3 +£ 0.8 to 6.5 + 0.3% per year and elemental carbon by -3.2 £ 1.4 to -
17 7.8 £0.7% per vear (Blanchard et al., 2013). Total carbon (OC + EC) generally decreased in both urban
18  and rural arcas, with the strongest trends in the West (Hand et al., 2013).
19 For species that are more strongly influenced by local urban sources, trends are manifested more

20 locally, and largely controlled by changes in local source emissions. Al, Fe, and Si decreased in Los
21  Angeles, suggesting successful control of fugitive dust emissions, but Cu declined little, probably

22 indicating similar contributions from brake wear (Cheung et al., 2012b).

2.5.2.2 Seasonal Variations

252241 PM2s

23 Observations described in Section 2.5.2.1.1 indicated that national average PM, 5 concentrations

24 and 98th percentile concentrations from 2013-2015 were both higher in winter than in summer (Table 2-
25 4), and observations described in Section 2.5.2.1.1 indicated that monthly average PMs s concentrations
26 exhibited distinct summer and winter peaks superimposed on a steadily declining national average PM: 5
27 (Figure 2-22). Averaged over all locations and years from 2001-2016, seasonal average PMa s

28  concentrations were approximately 12 ug/m® in summer and winter, but declined to approximately

29 9 ug/m’ in the spring and fall (see Figure 2-28).

30 While monthly average PM; 5 concentrations are higher in summer than in winter from
31 2002-2008, this pattern is reversed from 2009-2015, when monthly average PM- s concentrations

32 become higher in winter than in summer (see Section 2.5.2.1.1, Figure 2-22). This is a major departure
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from previous concentration trends. Observations that the highest seasonal average concentrations
occurred in summer in the Eastern U.S. and in winter in the Western U.S. with a few exceptions was
already clearly established from 1999-2001 data from the newly operational PM- s network (U.S. EPA

its implementation, and were confirmed in the 2009 PM ISA (U.S. EPA, 2009). The observed reduction

in summer PMs s concentrations in the East to the extent that summer is no longer the season with the

highest national average PM- s concentrations is a major development, and is a predictable consequence
of successful reduction of SO, emissions.
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Source Permission pending: Chan et al. (2018).

Figure 2-28 National average PM2.5 concentration by month 2000-2015.

25.22.2 PMig-25

Relatively little had been published on the seasonal variability in PMio-2 5 concentrations at the
time of the 2009 PM ISA (U.5. EPA, 2009). Figure 2-29 shows three U.S. regions used for comparison of
PMio2s: the U.S. East of the Mississippi and the Northern and Southem portions of the U.S. West of the
Mississippi. The regions were divided in this way because previous discussions based on limited data had
suggested that PM o was mostly PM 5 in the eastern U.S. and mostly PMio-2 5 in the western U.S. (U.5.

EPA 2009, 2004), and these two regions were compared to investigate whether there were also seasonal

differences between East and West. However, because results indicated that geographic differences within
the western U.S. were greater than observed East-West differences, the western U.S. was further divided
into northern and southern portions.

based on data from the IMPROVE network, after dividing the U.S. into these three regions. All regions
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display clear seasonal variations, with the lowest concentrations occurring around January and the highest
occurring in the summer months. The highest PMo-2 5 concentrations are observed in the
Southwest/Central region. Concentrations in this region are much higher than concentrations in the East
and a seasonal pattern of high summer and low winter concentrations is apparent. By contrast, average
concentrations in the Northwest region stretching all the way from the Pacific to the Dakotas were more
similar to those in the East, but with a more pronounced seasonal pattern than either the East or the
Southwest. These observations indicate that geographic patterns of PM1-2 5 concentrations are more
complicated than a simple East-West split, but that there are large areas of the Western U.S. where
average PMo 25 concentrations are similar to the Eastern U.S.

Source Permission pending: U.S. EPA analysis of Air Quality System network data 2011-2015.

Figure 2-29 Regions used for coarse PM comparison.
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Colors of the lines correspond to the colors of the regions in Figure 2-29, i.e., red is East, green is Northwest, and blue is
Southwest/Central.

Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2011-2015.

Figure 2-30 Average daily PM1o-2.5 concentrations over the 4-year period
2011-2014 collected by the Interagency Monitoring of Protected
Visual Environments (IMPROVE) network.

The scasonal differences described in Section 2.5.1.1.3 of highest PMio— 5 concentrations in
Spring and Fall and lowest concentration in winter (see Table 2-6) are consistent with other recent
observations. In Colorado the highest PM1o-25 concentrations were observed in the Spring and Fall
(Clements et al., 2014b). The monsoon period in this region is characterized by high wind events that

increase PMiy-2 5 concentrations due to local wind driven soil, especially at rural sites with agricultural

activity (Clements et al., 2014b). In Los Angeles PMo-2 5 concentrations were 2—4 times higher in

summer than in winter (Pakbin et al., 2010). However, organic coarse PM in Southemn California was

higher in winter than summer, and mostly was due to soil or biota, especially in “semirural” areas like
Riverside and Lancaster (Cheung et al., 2012b).
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25223 Ultrafine Particles

Relatively little has been published about seasonal or hourly differences in UFP concentrations
except for localized studies in a few locations suggesting higher concentrations in winter than summer

and an inverse relationship between UFP number and temperature (1J.S. EPA, 2009). High afternoon

concentrations during warmer months were attributed to NPF and high winter and evening UFP

QN W N e

25224 PM Components

7 PM composition varies considerably with season. Figure 2-31 shows these changes. Seasonal
8  concentration patterns are for the most part similar to those reported in the 2009 PM ISA (U.S. EPA,

9  2009) and conclusions from recent analyses of network data (Hand et al., 2013; Hand et al., 2012¢) are

10 consistent with patterns that can be observed in Figure 2-31. Sulfate and OC together accounted for the
11 majority of PM; s mass in many metropolitan areas in the summer, while higher nitrate concentrations

12 were observed in the winter (U.5. EPA. 2009). Urban and rural seasonal variations of ammonium sulfate

13 were similar, and both urban and rural concentrations were substantially higher in the East (Hand et al.
14 2012¢). High winter nitrate concentrations were common in both urban and rural areas, but higher in

15 urban areas (Hand et al.. 2012¢). Fine soil concentrations, highest in the Southwest, also had similar

16  scasonal patterns for urban and rural sites (Hand et al., 2012¢c).

17 The higher OC contributions in fall and winter in the West compared to lower OC concentrations
18 in winter in the Southeast reported in the 2009 PM ISA (U.S. EPA . 2009) are evident in Figure 2-31. EC
19  mass concentration exhibited smaller seasonal variability than OC, particularly in the eastern half of the

20  U.S. Carbonaceous acrosols varied more with scason in the West than in the East for both urban and rural
21 sites, although the seasonal patterns were different between Western urban and rural sites (Hand et al.,

22 2013). PBAP often contributes more to PM mass in spring and summer than in fall and winter (U.S. EPA
23 2009).

24 The metals Cu, Fe, Se, Pb, V, and Ni showed less seasonal variability than the sulfate, nitrate, and
25 OC as reported in the 2009 PM ISA (U.S. EPA. 2009). More recently, in Los Angeles, trace element

26  concentrations were higher in drier months of September and October, compared to December and

27 January (Na and Cocker, 2009).

28
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Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2013-2015.
Figure 2-31 Ambient PM2s seasonal composition 2013-2015.
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2.5.2.3 Hourly and Weekday-Weekend Variability

As described in the 2009 PM ISA (U.S. EPA. 2009), hourly PM: s and PM,; measurements are
conducted at several hundred network monitoring sites. A two-peaked diel pattern was observed in

diverse urban locations and attributed to rush-hour traffic for the moring peak and a combination of rush
2009). In most cities, a morming PM: s peak was present starting at approximately 6:00 am.,
corresponding with the start of the moring rush hour just before the break-up of the planetary boundary
layer. Figure 2-32 shows diurnal patterns for multiple cities using more recent data showing rush hour
peaks in the morning and evening in most cases, which is consistent with the daily variability in PMa s
concentrations observed in the 2009 PM ISA (U.S. EPA, 2009).

Diurnal variations in PMs 2 5 concentrations have also been investigated. In Los Angeles in the
summer the highest concentrations of PMio-25 were observed in midday and afternoon when winds were

the strongest. Traffic was responsible for significant resuspension especially during winter nights when

2012b).

As described 1in Section 2.5.1.1.5 (Figure 2-18), for UFP a dicl maximum was observed on

average during evening hours in diverse geographic locations. An inverse relationship between UFP
number and temperature has also been observed, and high afternoon concentrations during warmer
months were attributed to photochemical formation and high winter and evening UFP concentrations
were attributed to lower mixing heights (U.S. EPA, 2009). Relatively little had been published about
hourly differences in UFP concentrations at the time of the 2009 PM ISA except for localized studies in a

few locations indicating a diel maximum during evening hours (U.5. EPA, 2009).
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Source Permission pending: U.S. EPA 2016 analysis of Air Quality System network data 2012-2015.

Figure 2-32 Diurnal variation of PM2s concentrations in urban areas

2.5.3 Common Patterns of Particulate Matter Characteristics in the U.S.

In this section the information on sources, particle size distribution and composition from recent
research results and monitoring data are combined to describe common patterns of PM characteristics
observed in the U.S. across different regional and seasonal conditions. Historically, PM: 5 has been
highest in the summer and has been largelv accounted for by sulfate over a large area that encompasses
have changed in major urban arcas of the Eastern U.S. between 2003—2005 and 2013—-2015 based on
CSN monitors. At all of the locations shown in Figure 2-33 sulfate was the most abundant component
measured for the period 2003—-2003, accounting for close to half of the overall average PM»s mass. In
contrast, during the period 20132015 sulfate accounted for only about a quarter or a third of PM, s mass.
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For example, the sulfate fraction dropped from 49 to 31% in Washington DC, 51 to 349 in Pittsburgh, 42
to 24% in New York, 43 to 26% in Philadelphia, 44 to 27% in Boston, and 52 to 33% in Cincinnati. In all
but five of these locations, mostly in Ohio or the Ohio Valley (Cleveland, Cincinnati, and Dayton, OH,
Louisville, KY, Dallas, TX), OC has replaced sulfate as the most abundant component, although OC and

[ T S S

__________________

In the Eastern half of the U.S., the steep decline in sulfate concentrations has led to major changes
in PM composition, seasonal concentration patterns, and size characteristics since publication of the 2009
PM ISA (U.5. EPA, 2009). PM,, concentrations in the Eastern U.S. and Midwest previously peaked in

summer and was mostly composed of PMs s, with sulfate as the largest single component. More recently,

N=R e E o)

10 summer concentrations are similar to other seasons, the PMio» 5 and PM: s fractions are often comparable,

11 and OC is frequently the most abundant single component.

12 Some finer scale trends within the Eastern U.S. are evident. While OC is becoming the

13 component with the highest concentration throughout the Eastern U.S ., in the Southeast annual average
14 OC concentrations are somewhat higher than in the Northeast or Midwest, reaching their highest

15  monitoring concentrations in a large area encompassing most of Alabama, Georgia, and South Carolina

16  (Handetal., 2011). The origin of summer OC in the Southeast has been intensively studied and is largely
17 SOA due to oxidation of biogenic precursors (Marais gt al . 2017; Rattanavaraha et al., 2016;

18  Lewandowski et al., 2013), and urban arcas of the Southeast like Atlanta have considerably more biogenic
19 VOC precursors than urban areas of the Northeastern U.S. like New York City (Weber et al., 2007).
20 Integrated modeling and measurement results (Kim et al.. 2015), modeling predictions (Marais et al.

21 2017; Ying et al., 2015), and product concentration measurements (Lewandowski et al., 2013) are also

22 consistent with higher OC concentrations and biogenic SOA at Southeastem sites than in the Northeast or

23 Midwest. OC concentrations in the Southeast are decreasing (Marais et al., 2017).

24 Another area in the Eastern half of the U.S. stretching from Minnesota and lowa through

25 Wisconsin, Michigan, Indiana, and Ohio comprises as a region susceptible to high winter nitrate episodes
26 resulting from high emissions of ammonia from animal agriculture combining with atmospheric nitric

28  2009). This region can be distinguished in Figure 2-31 for 2012—2014 by winter nitrate contributions of
29 more than 40% to seasonal average PM» s mass in Chicago, 1L, Minneapolis, MN, Milwaukee, W1,

30 Detroit and Grand Rapids, M1, Indianapolis, IN, Cincinnati and Dayton, OH, Davenport and Des Moines,
31  IA, Omaha, NE, Kansas City, MO and at several other sites in the upper Midwest.
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Figure 2-33 Sulfate as percentage of PMzs in eastern urban areas 2003-2005
and 2013-2015.
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While substantial differences in PM size distribution, composition, and other characteristics have
been reported between the Eastern and Western U.S. (U.S. EPA. 2009), the diversity of PM
characteristics across the West makes it more difficult to identifv a set of fundamental PM characteristics

that applies to the entire region. In interior urban areas, including Salt Lake City, UT, Reno, NV, Boise,
ID, Missoula, MT, and Spokane, WA, PM; 5 levels are higher under stable conditions on days with snow
cover. In Salt Lake City, UT, Reno, NV, and Missoula, MT, most of the highest concentrations were
observed on days with high nitrate concentrations enhanced by colder temperatures and higher relative

humidity that occur with snow cover (Green et al., 2015). After multiday periods with stable conditions
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created by snow cover, PM, s can build up rapidly in layers or in cold air pools. In one case in Salt Lake
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al.. 2014; Silcox et al., 2011). This area is also subject to episodically high PM;o-2 5 concentrations from

Ju—
N

dust suspension.

13 Closer to the coast, high PM episodes cannot be explained by snow cover and extreme cold, yet
14  some of the highest PMa s concentrations in Figure 2-13 and Figure 2-14 are in California and

15 concentrations are also highest in winter. In many California locations, a specific combination of

16  conditions appears to be responsible for the highest PM concentrations. High winter PM» 5 concentrations
17 were studied intensively over 12 winters and the existence of several simultaneous conditions for at least
18 2 days duration were required for concentrations to exceed 35 pug/m’, including a ridge of high pressure
19 aloft, persistent easterly flow extending up vertically, orographically channeled winds resulting from

20 stability, and enhanced nocturnal cooling under clear skyv conditions (Beaver et al., 2010). Ammonium

21  nitrate and organic PM from diverse combustion sources are the main contributors to PM: s under winter
22 conditions in California (Young et al., 2016; Zhang et al., 2016; Schiferl et al., 2014). Some of the highest
23 98th percentile concentrations were reported in California and other monitoring sites in the Western U.S.
24 in Section 2.5.1.1.1 (Figure 2-14).

25 A common characteristic of PM in both California and the dryer arcas of the Western U.S. that
26  contrasts with the Eastern U.S. is the higher fraction of PM1, accounted for by PMig2 5, with PMig 25

27 accounting for most PMj; mass in the West, but PM: s accounting for most PMio mass in the East (see

28  Table 2-7). Populated areas of the Northwest (Western Oregon and Washington) make an exception to

29  this trend. Table 2-7 shows that in both Seattle, WA and Portland, OR, PM; s accounts for more than 50%
30 of the PMo mass and concentrations are higher in winter than in summer. Wood smoke is a major source
31  of PMysin Portland, OR and Seattle, WA (Kotchenruther, 2016; U.S. EPA, 2009), as well as in smaller

32 urban areas in this region.

33 PM. s concentrations averaged over the 11-year period from 1998—2008 over the entire

34 contiguous U.S. were reported to be 2.6 pg/m® higher on days under stagnant conditions than for non-

35  stagnant days (Tai et al., 2010). When all U.S. data over a multiyear period are considered, temperature is
36 positively correlated with PM2 s (Tai et al., 2012a; Tai et al.. 2012b), especially in the Eastern U.S. (Tai et
37  al., 2012a). Much of PM s variability could be explained by cold frontal passages in the East, maritime
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inflow in the West, and cyvclone frequency in the Midwest (Tai et al., 2012b). Other meteorological
conditions that have been reported to enhance PM concentrations include sea breezes (Georgoulias et al..
2009) and drought (Wang et al., 2015).

254 Background Particulate Matter

The definition of background PM can vary depending upon context, but it generally refers to PM
that is formed by sources or processes that cannot be influenced by actions within the jurisdiction of
concern. Consistent with other recent NAAQS reviews (U.S. EPA, 2014); U.S. EPA, 2015, 4679035},

there are two specific definitions of background PM of interest: natural background and U.S. background.

Natural background is the narrowest definition of background, and it is defined as the PM that would
exist in the absence of any manmade emissions of PM or PM precursors. U.S. background PM is defined
as any PM formed from sources or processes other than U.S. manmade emissions. Approaches to
estimating background PM have evolved over the vears. Different approaches for estimating background
concentrations in the western and eastern U.S. were taken in the 2004 PM AQCD (U.S. EPA, 2004). Data
from IMPROVE monitoring sites in the western U.S. thought to be among the least influenced by

regional pollution sources exhibited annual mean concentrations of ~3 pg/m’. However, even the most
remote monitors within the U.S. can be periodically affected by U.S. anthropogenic emissions, and
concentrations observed at the most remote sites in the Eastern U.S. were considerably higher than in the
western U.S. In the 2009 ISA (U.S. EPA, 2009), estimates of background concentrations were calculated
by CMAQ and classified by region and quarter. All quarterly and annual estimates were less than

2 pg/m?®, with many <1 pg/m°. However, episodic contributions from dust storms or wildfires can be
much higher. Further details are given by (U.S. EPA, 2009).

As illustrated by this example, background PM concentrations can be best characterized with
chemical transport modeling simulations via source apportionment modeling or estimating what the
residual PM concentrations would be were the U.S. anthropogenic emissions entirely removed
(i.e., “zero-out” modeling). Unfortunately, there has not been a similar national scale effort to update
background PM: 5 concentration estimates since the 2009 PM ISA. However, there has been considerable
research focused on better understanding the sources and processes that influence background
contribution to PM; 5 in the U.S.

Background contributions to PM can come from a variety of sources. Natural sources include
wind erosion of natural surfaces, volcanic production of SO4>~; primary biological acrosol particles
(PBAP); wildfires producing EC, OC, and inorganic and organic PM precursors; and SOA produced by
oxidation of biogenic hydrocarbons such as isoprene and terpenes (U.S. EPA, 2009). However, human

mtervention can be involved in the formation of SOA. For example, the production of SOA from the
oxidation products of isoprene and other biogenic VOC’s can be enhanced by the presence of SO», NOx,

and other anthropogenic pollutants, accounting for as much 50% of SOA from biogenic VOC’s
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(Section 2.3.2.3). Other sources of background PM are anthropogenic, principally emissions from outside
the U.S. which can be transported into the U.S. The importance of different contributors to background
PM varies across the contiguous U.S. (CONUS) by region and season as a function of the complex

S I

mechanisms of transport, dispersion, deposition, and re-entrainment.

Background PM can also be viewed as coming from two conceptually separate components: a
somewhat consistent “baseline” component and an episodic component. The baseline component consists
of contributions that are generally well characterized by a reasonably consistent distribution of daily
values each year, although there is variability by region and season. The episodic component consists of

o8 -1 N

infrequent, sporadic contributions from high-concentration events occurring over shorter periods of time
10 (e.g., hours to several days) both within North America (e.g., volcanic eruptions, large forest fires, dust
11 storms) and outside North America (e.g., transport from dust storms occurring in deserts in North Africa
12 and China). These episodic natural events, as well as events like the uncontrolled biomass burning in

13 Central America, are essentially uncontrollable and do not necessarily occur in all years. Section 2.5.4.1

14  and Section 2.5 4.2 below discuss natural background and intercontinental transport contributions to

15 background PM in the U.S.

2541 Natural Background

16 On average, natural sources including soil dust and sea salt have been estimated to account for

17 approximately 10% of U.S. urban PM, s (Karagulian et al.. 2015). Dust storms are common occurrences

18  in arid regions of the U.S. and the rest of the world. An extreme example is the haboob. During one of
19 these affecting Phoenix in July of 2011, peak hourly average PMj, concentrations were >5.000 pug/m’

20 with area wide average hourly concentrations ranging from a few hundred to a few thousand ug/m?®

21 (Vukovic et al,, 2014). Dust can also make up a substantial fraction of total PM: 5 in the Southwestern

22 U.S. This is illustrated in Figure 2-19 (Section 2.5.1.1.6), which shows that at many locations in the

23 Southwestern U.S., crustal material from soil accounts for close to half of the annual average PM» s mass.
24 Although similar network data do not exist for PMio-2 5, the soil contribution to PMo-2 s mass in these

25 locations is likely to be even higher. Dust also accounts for much of the PM that originates from outside
26  the U.S. (Section 2.5.4.2).

27 Wildfires are a variable contributor to particulate matter emissions. Satellite-based fire detections
28  are combined with ground-based estimates of area burned, fuel availability, and emission factors to
29 quantify PM and precursor emissions at high spatial and temporal resolution (Strand et al., 2012). The

30 gas-phase species emitted from fires can affect oxidation and formation of semivolatile compounds that

31  can condense into the particle phase (Baker et al., 2016). Invasive species, historical fire management

32 practices, frequency of drought, and extreme heat have brought longer fire seasons (Jolly et al.. 2015) and

33 more large fires (Dennison et al., 2014). In addition to emissions from forest fires in the U.S., emissions

34  from forest fires in other countries can be transported to the U.S ., and transport from Canada, Mexico,
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Central America, and Siberia have been documented (U.S, EPA, 2009). According to the U.S. EPA’s

National Emission Inventory, wildfire smoke contributes between 10 and 20% of primary PM emissions

per year (Section 2.3.1), however these emissions are concentrated at the burn area and mostly during the

S I

wildfire season, rather than evenly distributed through the year (Sturtz et al., 2014).

W

Primary biological acrosol particles (PBAP) such as bacteria and pollen can also contribute

substantially to PMio» s mass in some locations. These are discussed in more detail in Section 2.3.3.

2.5.4.2 Intercontinental Transport

7 Intercontinental transport contributes 0.05 to 0.15 ug/m’ to annual average PMs s concentrations

inthe U.S. (Kolb et al., 2010). Large continuous data sets are available to examine the intensity and

9  frequency of intercontinental PM transpoit events. Ground-based lidar networks and mountain top
10 measurements in Europe, North America, and Asia have been used to establish that intercontinental
11 transport of PM from dust, forest fires, and anthropogenic sources impact local PM» s and PMy
12 concentrations. Satellites also provide estimates of the amount of PM transported, as well as the altitude at
13 which the transport occurs. Transport at midlatitudes is dominated by westerly winds, which transport
14  East Asian emissions across the North Pacific Ocean to North America. Transport occurs at greater
15 speeds and over longer distances in winter than in summer because the westerly winds are stronger, and
16 greater precipitation in winter in the Western U.S. brings more of the transported PM to the surface.
17 Numerous studies have now documented long-range transport of desert dust from East Asian deserts.
18 Both the frequency of transport events and the overall contribution to PM in the U.S. are reported to be
19  increasing (Kolbetal., 2010; TFHTAP, 2006). By one estimate, 18 Tg/year PM exits Asia between 30 to
20 60 degrees N latitude, with 4.4 Tg/yr arriving in North America (Yu ¢t al., 2008).

21 Episodic concentrations as high as 20 pg/m® of PM associated with transport to the U.S. from

22 Asiahave been estimated (Jaffe et al., 2005), and PM- s from Asia has been shown to account for a large

23 fraction total PM; s in polluted urban air (Jaffe et al.. 2003). Over longer time periods, long range

24 transport can make a substantial contribution to local PM concentrations in remote areas like the Arctic.
25 However, in regions with local sources, observed trends in PM are usually more closely related to local
26 emission trends than to long-range transport, and at monitoring sites throughout the U.S. intercontinental
27 influences are small (Henze et al.. 2009).

28 On average, Asian dust contributes typically <~1 pg/m? to PM, s at remote sites in western states

29 (Creamean et al., 2014). However, transport of Asian dust shows both strong seasonal and interannual

30 variability. Dust emissions are at a maximum in spring, associated with strong winds following cold
31  fronts as the Siberian High extends southward and before there is sufficient vegetation to stabilize the
32 surface. Based on inverse modeling of Asian dust over the period 20052012, Yumimoto and Takemura

33 (2015) suggested that dust emissions, transport and deposition are largest during the La Nifia phase of the
34 El Nifio-Southern Oscillation ¢ycle. They also found that dust emissions were closely related to a strong
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meridional pressure gradient and a strong winter monsoon. Husar et al. (2001) report that the average

PM;, concentration at 25 reporting stations throughout the northwestern U.S. reached 65 pg/m’® during an
episode of Asian dust transport during the last week of April 1998, compared to an average of

10-25 pg/m’® during the rest of April and May. This was accompanied by visual reports of milky-white
discoloration of the normally blue sky in nonurban areas along the West Coast. Satellite data have been

especially useful for tracking the trans-Pacific transport of Asian dust. Uno et al. (2011) documented the

occurrence of multiple large plumes of Asian dust in April of 2010 that had passed over most of the
continental U.S. based on space-bome lidar (the Cloud-Aerosol Lidar with orthogonal Polarization) on
board the CALIPSO satellite. Three-dimensional, global-scale CTMs have also been used to estimate
intercontinental transport of PM pollution (TEHTAP, 2007) and trans-Pacific transport of mineral dust
from Asian deserts (Fairlie et al.. 2007).

Transport of dust from the Sahara Desert and the Sahel in North Africa (Prospero, 19992, b),
(Chiapello et al., 2005), (Mckendry et al., 2007) can affect the eastern U.S., while transport of dust from
the Gobi and Taklimikan deserts in Asia (Vancuren and Cahall, 2002), (Yu et al.. 2008) can exert effects
in the western U.S. The ability of African dust to substantively affect PM levels in the U.S. was
extensively reviewed in the 2004 PM AQCD (U.5. EPA, 2004) and in the 2009 PM ISA (U.S. EPA,
2009). A multidecade record of African dust reaching Miami indicates that the highest loadings are found

in July (Prospero, 1999a, b) with concentrations ranging from ~10 to ~100 pg/m*. Sample collection

began in 1974, before network PM;o and PM, s samplers were developed, and no size cut was specified
(Prospero, 1999b). Yu et al. (2013) found that the transport of North African dust across the Atlantic
Ocean is strongly negatively correlated with precipitation in the Sahel during preceding year. Dust from

Africa has shown a decreasing trend of ~ 10% per decade from 1982 to 2008, based on measurements of
acrosol optical depth and surface concentrations in Barbados by Ridley et al. (2014), who also suggest

that this decrease 1s due to a corresponding decrease in surface winds over source regions.
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In addition to desert dust, a portion of the PM reaching the U.S. through intercontinental transport
is from combustion and industrial sources, and formation of sulfate from SO. during transport of air
masses to the U.S. from Asia is also well documented. In the Spring in the Northwestern U.S. | transport
from Asia accounted for 0.16 + 0.08 pg/m® PMy 5 sulfate (Heald et al., 2006). Sulfate of Asian origin can
account for a large fraction of sulfate in the upper troposphere in western North America, and an

increasing fraction of sulfate measured off the northwest coast of the U.S. is of Asian origin.
Measurements from an event over the Pacific Ocean were consistent with nearly pure sulfuric acid.

Transboundary transport within North America can also be important. Model results suggest that SO»

NoRie T B R T IS S O R

emissions in Mexico influence sulfate formation in the U.S. (Henze et al., 2009). Leibensperger et al.
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background PM* in the western U S. of a few tenths of a pg/m?>.

2.6 Summary

12 New observations indicate that some fundamental characteristics of atmospheric PM in the U.S.
13 are changing. These range from source emissions and atmospheric formation processes to size

14 distributions, particle composition, and spatial and temporal concentration trends. The most noticeable

15 change in PM or precursor source emissions is the large reduction in SO, emissions, mainly from

16  decreased EGU coal combustion. In addition, advances in engine and emissions control technologies have
17 led to continued decreases in automobile emissions. The major urban stationary sources of PM are still
18  industrial processes, construction and road dust, residential wood burning and other fuel combustion, and
19 cooking. The major primary mobile sources are still diesel and gasoline powered highway vehicles as

20 well as off-road vehicles and engines like locomotives, ships, aircraft, and construction and agricultural
21 equipment. PM, s particles from combustion sources are usually emitted as UFP and grow into larger

22 particles after emission. Secondary PM: s still accounts for a substantial fraction of the PM2 s mass from

23 both natural and anthropogenic sources (U.S. EPA, 2009). Major PM1o-2 5 sources are dust suspension, sea

24 spray, and biological materials. Automobile traffic, other combustion sources, and new particle formation

25 are major UFP sources.

26 Research on atmospheric chemistry has largely focused on better understanding OC sources and
27 SOA formation pathways. Progress in understanding SOA precursors centered on model results of large
28  fractions of SOA from aromatic and monoterpene precursors, observations of gas phase VOC oxidation
29 products continuing to react to form PM, and the discovery of isoprene as a major SOA precursor.

30 Progress related to understanding SOA formation processes was directed toward evidence of cloud

31  processing as well as repeated cycles of volatilization and condensation of semivolatile reaction products

32 as important processes for SOA evolution, investigation of misclassification of SOA as primary organic

40 PM size was not specified, but secondary PM formed from NOx and SO: is usually nearly all in the PM, 5 size
range.
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acrosol under typical sampling conditions, and observations of greater SOA vields at high NOx
concentrations. Progress in understanding SOA products involved identification of higher molecular
weight particle phase oligomers and organic peroxides as an abundant class of reactive oxygen species

(ROS) with high oxidizing potential in SOA, as well as observations of abundant organosulfates and

[ T S S

organonitrates in SOA.

Major developments in PM monitoring and monitoring capabilities have taken place, and these
have had an important impact on our understanding of PM characteristics. For example, before the
availability of network data, the 2009 PM ISA was based on literature results and concluded that PMio-2 5
concentrations were higher in the Western U.S. than in the Eastern U.S. (U.S. EPA, 2009). The NCore
10 network was implemented in 2011 and now produces multipollutant concentration and data at 78 stations

N=R e E o)

11 throughout the U.S. Through NCore, more reliable data on PMi— 5 concentrations are available than were
12 possible before. The first years of NCore data reveal a more complicated concentration pattern than a

13 simple East-West split, with the highest PMio-2 5 concentrations observed in the Southwest from

14 California to Texas, and in the Central U.S. from Texas and Louisiana as far north as Nebraska and Iowa.
15 In contrast, there are large arcas in the Northwest where average PM1o-2 5 concentrations and PM, s/PMig
16  are similar to the Eastern U.S. Rapid advances are taking place in UFP measurement technology, but

17 measurements are more method dependent and network monitoring is in its beginning stages. Network

18  monitoring of PM: s has expanded to include numerous near road monitoring sites.

19 Annual mean ambient PM: s concentrations in the U.S. on average are 4—5 pg/m?® lower than they
20 were in the last decade, continuing a downward trend described in the 2009 PM ISA (U.S. EPA, 2009).
21  PMs;s concentrations are highest in the San Joaquin Valley, the Los Angeles-South Coast Air Basin of

22 California, and parts of Utah. In the Eastern U.S. there is a region of higher PM, s concentrations with

23 annual average concentrations greater than 10 pug/m? stretching from Eastern Iowa and Northern Illinois
24 across Indiana, Ohio, and into to Eastern Pennsylvania. While monthly national average PM: 5

25 concentrations were higher in summer than in winter from 2002-2008, this pattern is reversed from

26  2012-2015, when monthly average PMs 5 concentrations become higher in winter than in summer.

27 Summer PMis 25 concentrations are generally higher than other seasons, but extreme PMio 25 events

28  appear to be more likely in the spring. PM;, reflects characteristic concentration patterns of both PMjo-25
29 and PM, s, with the highest concentrations in summer. The decrease in PM; 5 concentrations has resulted
30 in smaller PM,s/PMj, ratios, and PMy, in the East and Northwest is in the range of 50—60% PM3 s, while
31  PMioin the Western U.S. is generally less than 50% PM:s. On urban and neighborhood scales, both

32 spatial and temporal variations are strongly influenced by motor vehicle emissions, with the highest PM; 5
33 and UFP concentrations at rush hour, and the highest concentrations of PMo2 5, UFP, and many PM; s
34 components near roads with heavy traffic.

35 Recent changes in PM: 5 long-term and seasonal concentration trends are consistent with
36 observed changes in PM» s composition compared to the 2009 PM ISA (U.S. EPA. 2009), the greatest of
37  which is the reduction in sulfate concentrations, resulting in a smaller sulfate contribution to PM» s mass
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in 2013-2015 than in the last decade, especially in the Eastern U.S. As a result, at many locations sulfate
has been replaced as the greatest single contributor to PM2 s mass by organic matter. Sulfate and OC are
the components with the highest contribution to total mass in most eastern locations and OC usually
makes the greatest contribution to PM» s mass in the west, although sulfate, nitrate, and crustal material
can also be abundant. The highest nitrate concentrations are found in the west, particularly in California,
but with some ¢levated concentrations in the upper Midwest. Ammonium concentrations follow both
nitrate and sulfate spatial patterns because it is mostly present as ammonium sulfate and ammonium
nitrate. Larger contributions of OC to PM; s mass are observed in the Southeast and the West than in the
Central and Northeastern U.S. A large fraction of organic PM can be water soluble. Crustal elements and
biological material account for large fraction of PMio»s mass. There is still little information on the
composition of UFP, but urban UFP is often rich in OC and EC.

Background PM originates from natural and international sources. Natural sources include
windblown dust, wildfires, and sea salt. International contributions include intercontinental transport of
dust, wildfire smoke, and pollution as well as transboundary transport of these contributors from Canada,
Mexico. Background PM usually makes a relatively small contribution to urban annual average PM, 5
concentrations. However, it is an important contributor to PM, s concentrations in the southwestern U.S.,
and impacts PM; s concentrations elsewhere on an episodic basis. Background contributions to PMiy 25
can be substantial, as it is generally dominated by dust and sea salt. Less is known about background
contributions to UFP.
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CHAPTER 3 EXPOSURE TO AMBIENT
PARTICULATE MATTER

Overall Conclusions regarding Exposure to Ambient PM
Recent and existing evidence indicate that exposure error typically produces underestimation of
health effects in epidemiologic studies of short-term and long-term PM cxposure. Bias away
from the null can sometimes occur for long-term exposure studies if a monitor or model
underestimates population exposure.
New developments i PM exposure assessment methods. including hybrid spatiotemporal models
that incorporate satellite observations of AOD  land use vanables, surface monitoring data from

FRMs. and/or C'TMs. have reduced bias and uncertainty in health ¢ffect estimates by improving
the spatial resolution and accuracy of exposure predictions.

High correlations of PM. s with some gascous copollutants necessitate cvaluation of the impact of
confounding on health cffect estimates,

There is typically more uncertainty for health effect estimates for exposure to PM, - - and UFP.
because their concentrations tend to be more spatially vaniable than PM. < concentrations and
concentration data for PM,,, -5 and UFP are less frequently available and/or more uneertain,

3.1 Introduction

Assessment of exposure to ambient PM builds from the characterization of concentrations and
atmospheric chemistry presented in CHAPTER 2. The primary conclusions from CHAPTER 2 were that
PM. s concentrations continue to decrease over time with few areas exceeding the level of the current
NAAQS, sulfates comprise a smaller proportion of total PM. s throughout the country including in the
eastern half of the country, PMio-» s contributes most substantially to PMy in the southwestern U.S. but is
highly variable across urban areas, and substantial uncertainty still exists regarding UFP sources,

composition, and concentrations.

This chapter presents new developments in exposure assessment methodology and interpretation
of epidemiological study results given strengths and limitations of the exposure assessment data. The
chapter describes concepts and terminology relating to exposure (Section 3.2), methodological
considerations for use of exposure data (Section 3.3), and exposure assessment and interpretation of
epidemiologic study results (Section 3.4). This chapter focuses on the ambient component of personal
exposure to PM, because the NAAQS pertains to ambient PM. However, studies using total personal PM
measurements or indoor PM concentrations to represent exposure can also inform the understanding of
the relationship between exposure and health effects and so are included as supporting evidence if
ambient PM exposure can be deduced from the information provided in the studies. This chapter focuses
on studies of exposure among the general population. Exposure of groups potentially at increased risk of
PM-related health effects, based for example on socioeconomic status and race, is addressed in
CHAPTER 12. Intake of PM based on ventilation rate, and in relation to physical activity, is described in
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1 health effects of PM exposure presented in the health chapters that follow (CHAPTER 5, CHAPTER 6
2 CHAPTER 7, CHAPTER 8 CHAPTER 9, CHAPTER 10, and CHAPTER 11).

3.2 Conceptual Overview of Human Exposure

The 2009 PM ISA (U.5. EPA, 2009b) provided a conceptual model of exposure to form a

distinction between ambient PM exposure and total personal exposure. This section illustrated that

exposure 1s integrated over time and across the microenvironments in which a person spends time. This

[ Y

section also introduced the concept of an infiltration factor that depends on both penetration of PM

~J

indoors and the ventilation and deposition characteristics that influence indoor PM concentration. That

8  discussion is currently updated and presented in Section 3.2.2.

9 This ISA contains two new sections to orient the reader to concepts relevant to exposure.
10 Section 3.2.1 introduces terminology that is used throughout the chapter when describing exposure

11 assessment studies. Section 3.2.3 highlights facets of exposure assessment that are particularly relevant to
12 PM.

3.21 Exposure Terminology

13 A variety of metrics and terms are used to characterize air pollution exposure. They are described

14 here at the beginning of the chapter to provide clarity for the subsequent discussion.

15 The concentration of PM is defined as the mass of the pollutant in a given volume of air

16 (e.g., pg/m®). Concentrations observed in outdoor locations accessible to the public are referred to as

17 ambient concentrations. The term exposure refers to contact at the interface of the breathing zone with the
18  ambient concentration of a specific pollutant over a certain period of time (Zartarian et al., 2005), in

19 single or multiple locations. For example, contact with a concentration of 10 ug/m* PM, s for 1-hour

20 would be referred to as a 1-hour exposure to 10 ug/m® PMs s, and 10 pg/m’ is referred to as the exposure
21 concentration. As discussed in CHAPTER 4, dose incorporates the concept of intake into the body (via
22 inhalation).

23 A location where exposure occurs is referred to as a microenvironment, and an individual’s daily
24 exposure consists of the time-integrated concentrations in each of the microenvironments visited during
25 the day. Ambient air pollution may penetrate indoors (see Section 3.4.1.1 on infiltration), where it

26  combines with air pollution from indoor sources (nonambient air pollution) to produce the total measured
27  indoor concentration. Exposure to the ambient fraction of total indoor concentration, together with

28  exposure to ambient concentrations in outdoor microenvironments such as parks, vards, sidewalks, and

29  bicycles or motorcycles, is referred to as ambient exposure (Wilson et al.. 2000). Total personal exposure

30 fo ambient PM is the concentration of PM emitted from ambient sources or formed in the atmosphere that
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is encountered by an individual over a given time. This differs from overall total personal exposure,
which may also include exposure to nonambient air pollution. Personal exposure to ambient PM is
influenced by several factors, including:

e Time-activity in different microenvironments (¢.g., vehicle, residence, workplace, outdoor);
e climate (¢.g., weather, season);

e characteristics of indoor microenvironments (¢.g., window openings, draftiness, air conditioning);
and

e microenvironmental emission sources (€.g., roadways, construction equipment, indoor gas stoves)
and concentrations.
Because personal exposures are not routinely measured, the term exposure surrogate 1s used in
this chapter to describe a quantity meant to estimate or represent exposure, such as PMs s concentration
measured at an ambient monitor (Sarnat et al., 2000). A fixed-site monitor (i.¢., a monitor with a fixed

position) is a type of ambient monifor used to estimate population average exposure concentrations and

their trends over neighborhood- and urban-scales for epidemiologic studies.

When surrogates are used for exposure estimation in epidemiologic studies, exposure error or
exposure misclassification can result. Exposure error refers to the bias and uncertainty associated with
using concentration metrics to represent the actual exposure of an individual or population (Lipfert and
such as location, timing, or population grouping are incorrectly assigned. Exposure misciassification due
to exposure assignment methods and spatial and temporal variability in pollutant concentrations may be
either differential (i.e., systematic), or nondifferential (i.e., random). Differential misclassification refers
to the situation where exposure errors differ between groups. An example of differential misclassification
is the use of geocoding to estimate air pollution exposure by proximity to roadways, because
concentrations decrease with distance from roadways and are different upwind and downwind of a major
roadway (Lane et al., 2013; Singer et al., 2004). Nondifferential misclassification refers to the situation

where exposure characterization has the same probability of being misclassified to a similar degree across

all groups.

Exposure misclassification and exposure error can result in bias and reduced precision of the
effect estimate in epidemiologic studies. Bias refers to the difference between the population-average
measured and true exposure, while precision is a measure of the variation of measurement error in the

population (Armstrong et al., 1992). Bias toward the null, or attenuation of the effect estimate, indicates

an underestimate of the magnitude of the effect, and is characteristic of nondifferential measurement
error. Bias away from the null can occur through differential exposure measurement error, such as may
occur when an exposed person or group of people are located far from a source that is captured by a
fixed-site monitor (Armstrong et al., 1992).
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Exposure error has two components: (1) exposure measurement error derived from uncertainty in
the metric being used to represent exposure and (2) use of a surrogate parameter of interest in the
epidemiologic study in lieu of the true exposure, which may be unobservable. Classical error is defined
as error scattered around the true personal exposure and independent of the measured exposure. Classical
error results in bias of the epidemiologic health effect estimate. Because variation in the measurements
tends to be greater than variation in the true exposures, classical error typically biases the health effect
estimate towards the null (no effect of the exposure). This would cause the health effect estimate to be
underestimated. Classical error can also cause inflation or reduction of the standard error of the health
effect estimate. For example, classical error may occur when a fixed-site monitor measuring exposure
concentration is imprecise. Berkson error is defined as error scattered around the measured exposure
surrogate {in most cases, the ambient monitoring measurement) and independent of the true exposure
(Goldman etal., 2011; Recves et al., 1998). Pure Berkson error is not expected to bias the health effect

estimate. Berkson error tends not to cause bias in the health effect estimate. For example, Berkson error
may occur when personal monitors used in a panel study capture ambient and nonambient exposures, if
the objective of the study is to evaluate the effect of ambient exposures on health and the ambient and

nonambient exposures are independent of each other.

Definitions for classical-like and Berkson-like errors were developed for modeled exposures.
These errors depend on how exposure metrics are averaged across space. Classical-like errors can add
variability to predicted exposures and can bias health effect estimates in a manner similar to pure classical
errors, but they differ from pure classical errors in that the variability in estimated exposures is also not
independent across space. Szpiro et al. (2011a) defined Berkson-like and classical-like errors as errors

sharing some characteristics with Berkson and classical errors, respectively, but with some differences.
Specifically, Berkson-like errors occur when the modeled exposure does not capture all of the variability
in the true exposure. Berkson-like errors increase the variability around the health effect estimate in a
manner similar to pure Berkson error, but Berkson-like errors are spatially correlated and not independent
of predicted exposures, unlike pure Berkson errors. Berkson-like error can lead to bias of the health effect
estimate 1n either direction (Szpire and Paciorek, 2013).

The influence of these types of exposure errors on health effect estimates for specific short-term
on exposure estimates used in epidemiology studies informs evaluation of confounding and other biases
and uncertaintics when considering the health effects evidence in CHAPTER 5, CHAPTER 6, CHAPTER
7, CHAPTER 8, CHAPTER 9, CHAPTER 10, and CHAPTER 11.
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3.2.2 Conceptual Model of Total Personal Exposure

A conceptual model of personal exposure is presented to highlight measurable quantities and the
uncertainties that exist in this framework. An individual’s time-integrated total exposure to PM can be

described based on a compartmentalization of the person’s activities throughout a given time period:

n
1
Equation 3-1

where Et = total exposure over a time-period of interest, C; = airborne PM concentration at
microenvironment j, # = total number of microenvironments, and df = portion of the time-period spent in
microenvironment j. Total exposure (/) can be decomposed into a model that accounts for exposure to

PM of ambient (/.) and nonambient (/) origin of the form:

Er =E, +E,,
Equation 3-2

Indoor combustion, such as cooking, smoking, or candle burning, as well as cleaning, and other
activities are nonambient sources of PM (see Section 3.4.1.2, indoor-outdoor [1/O] relationships on indoor
PM) that are specific to individuals and result in variable nonambient exposures across the population.
Assuming steady-state outdoor conditions, %, can be expressed in terms of the fraction of time spent in
various outdoor and indoor microenvironments (U5, EPA, 2006; Wilson et al., 2000):

E, = 2f,Co + zfiFinf,iCo,i
Equation 3-3

where f, = fraction of the relevant time period (equivalent to dt in Equation 3-1) in outdoor
microenvironments; C, = PM concentration in outdoor microenvironments; C,; = PM concentration in
outdoor microenvironments adjacent to an indoor microenvironment 7; and Fz; = infiltration factor for
indoor microenvironment i. Equation 3-3 is subject to the constraint 2y, + 25 = 1 to reflect the total
exposure over a specified time period, and each term on the right hand side of the equation has a
summation because it reflects various microenvironmental exposures. Here, “indoors” refers to being
inside any aspect of the built environment, [¢.g., homes, schools, office buildings. enclosed vehicles
(automobiles, trains, buses), and/or recreational facilities (movie theaters, restaurants, bars)], while
“outdoors” refers to outdoor microenvironments (¢.g., parks, yards, sidewalks, and bicycles or
motorcycles). Assuming steady state ventilation conditions, the infiltration factor (/) is a function of the
penetration (£) of PM into the microenvironment, the air exchange rate (a) of the microenvironment, and
the rate of PM loss (k) in the microenvironment:
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Pa

Fopm
T (a+ k)
Equation 34

In epidemiologic studies, the ambient PM concentration, Ca, is often used in lieu of outdoor
microenvironmental data to represent these exposures based on the availability of data. Thus, it is often
assumed that C, = C, and that the fraction of time spent cutdoors can be expressed cumulatively as fo; the
indoor terms still retain a summation because infiltration differs for different microenvironments. If an
epidemiologic study employs only C,, then it is assumed that exposure to ambient PM, 7, given in
Equation 3-3, is re-expressed solely as a function of C,:

Ea = (ﬁl + EfiFinf,i)Ca

Equation 3-5

k.. First, C, represents all ambient PM concentrations combined. Measurements and models to quantify
C. may assign one uniform PM concentration in the region of study (e.g., Section 3.3.1.1), or it might be
modeled to represent how it varies outdoors across space (Section 3.4.2.2). Second, exposure is related to
both concentration encountered and time spent in a given microenvironment. Outdoor exposure is directly
influenced by ambient concentration and time spent outdoors. Indoor exposure occurs where infiltration
of ambient PM into the envelope of an enclosed space (e.g., building, bus) likely reduces ambient PM
exposure by filtering out a fraction of the ambient PM, but the influence of ambient concentration and
time of exposure is still present. The components of indoor and outdoor exposure to ambient PM to
comprise total ambient PM exposure, £,. Further combining these factors with human activity level

influences dose (Section 4.1.7).

Certain factors influence whether Equation 3-5 is a reasonable approximation for Equation 3-3,
including the spatial variability of outdoor PM concentrations due to spatial distribution of sources;
meteorology, topography, oxidation rates, and the design of the epidemiologic study. These equations
also assume steady-state microenvironmental concentrations. Errors and uncertainties inherent in using
interpreting epidemiologic studies. Epidemiologic studies often use concentration measured at an ambient
monitor to represent ambient concentration; thus o, the ratio between personal exposure to ambient PM

and the ambient concentration of PM, is defined as:

Eq
a=-—
Cq
Equation 3-6
Combining Equation 3-5 and Equation 3-6 vields:
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a=fo+ 2fiFnsi
Equation 3-7

where o varies between 0 and 1. If a person’s exposure occurs in a single microenvironment, the
ambient component of the microenvironmental PM concentration can be represented as the product of the
ambient concentration and /. Time-activity data and corresponding estimates of Fj, for each

microenvironmental exposure are needed to compute an individual’s o with accuracy (1.8, EPA, 2006).

In epidemiologic studies, a 1s assumed to be constant in lieu of time-activity data and estimates of Fiy
which can vary spatially (between homes) and temporally (within a home) based on building and

meteorology-related air exchange characteristics.

considering the influence of exposure measurement error on statistical models used in epidemiology
studies. Exposure measurement error occurs when there is an absence of information for the variables in
this framework, so assumptions must be made regarding ambient exposures. If important local outdoor
sources and sinks exist but are not captured by ambient monitors, then the ambient component of the local
outdoor concentration may be estimated using dispersion models, land use regression (LUR) models,
chemical transport models (CTMs), satellite data, or some combination of these techniques, which are

described 1 Section 3.3.2.

3.2.3 Exposure Considerations Specific to PM

The mhalation exposure route relevant for PM is influenced by sources, chemistry, particle size
distribution, meteorology, and ambient concentrations, as described in detail in Chapter 2 and briefly

summarized here.

influence several aspects of exposure. UFP dominates the number concentration (NC) distribution of PM,
while PM: s typically dominates the mass distribution. Combustion via energy production, mobile
sources, and industrial processes is the main primary anthropogenic source of UFP and PM, 5. Brake, tire,
and clutch wear can also contribute to primary UFP, PM»s, and PMio-25. Secondary production of NOs”,
NH.', and SO4* are also major contributors to PM: s, and the magnitude of those contributions varies by
region, time of day, and season. UFP will also grow to the accumulation mode following emissions on
time scales of hours to days. Road and construction dust are important anthropogenic sources of PMio 25
in urban areas, while agricultural dust is an anthropogenic source of PM1o-» 5 in rural areas. Biogenic
PMio-25 from pollen can also be a substantial contributor to overall PMig2s.

The size distribution influences transport and dispersion of PM, therefore affecting spatial and
temporal variability of PM concentration and hence exposure (1J.S. EPA. 2009b). UFP has a short

lifetime because it either readily evaporates or undergoes rapid growth into the accumulation mode via
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agglomeration of UFP into larger particles, condensation or adsorption of vapors onto UFP, or reaction of
gases in or on the particles (Section 2.2). PM2 s will tend to follow the wind unless evaporating,
participating in a surface reaction, and/or accumulating to a larger size. Particle growth may enhance
deposition. PM1o-2 5 in dust can settle out of the air at a faster rate than PM- 5. Resuspension by
vehicle-generated turbulence, tire motion, or other activities may occur for particles of any size but are
more likely for PMig 2 s, which forms more readily via mechanical generation (Section 2.3.3). As a result,
spatial and temporal variability of PM exposure concentration tends to be greater for UFP and PMio-25
compared with PM, s (Section 2.5).

Size distribution will also affect what fraction of the ambient air penetrates indoors (U.5. EPA

2009b). Because PM: s navigates changes in direction more easily, more PMa s tends to infiltrate indoors
compared with PMio2 5, which impacts onto building envelope surfaces more easily. UFP is more likely
to diffuse onto building envelope surfaces compared with PMs s, so it would be expected that a lower

proportion of UFP would infiltrate indoors compared with PM; 5.

In summary, variability and uncertainties in accounting for PM emissions, chemistry, transport,
and dispersion (noted here and described in detail in CHAPTER 2) leads to variability and uncertainties in
estimates of exposure concentrations. For PM, uncertainties extend to characterization of the statistical
distribution of particles by size and concentration (spatially and temporally). Because they have shorter
lifetimes compared with PM: s, spatial and temporal variability is more pronounced for the lower (UFP)
and upper (PMis-25) segments of the particle size distribution compared with the accumulation mode
(PM>s). Such uncertaintics may complicate estimation of exposure concentrations using models such as
CTMs (Section 3.3.2 4) or satellite-based methods where a relationship between PM, s and surface
measurements 1s derived (Section 3.3.3). Errors associated with these factors are described further in

3.3 Methodological Considerations for Use of Exposure Data
and Models

This section describes methods for estimating human exposure to PM, along with their strengths
and limitations, which are important to understand when developing associations between PM exposure
and health endpoints in epidemiologic analyses. The 2009 PM ISA (U.5. EPA. 2009b) and other literature
{e.g., Madrigano et al. (2013); Hubbell (2012); Tagans et al. (2009}] presented information about ambient

and personal monitoring, as well as models for data averaging, spatial interpolation, LUR, CTM, and
dispersion models. The current section extends that presentation by updating the assessment with
discussion of new methodology and a more detailed consideration of features, strengths, and limitations

of measurement and modeling techniques for PM exposure assessment.

For epidemiologic analyses, accurately assigning air pollutant exposure concentrations to
individuals is difficult given the limited spatial and temporal resolution of the available observations.

SECTION 3.3: Methodological Considerations for Use of Exposure Data and Models
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Applications can vary in scale, from personal (Baxter et al., 2013; Brown et al., 2012; Dons et al.. 2012;
Kaur and Nicuwenhuijsen, 2009) to national (Fann et al., 2012; Bell et al., 2011b) to global (Lelieveld et
al, 2015; Braueretal., 2012; Lim et al., 2012). In some studies, personal monitoring has been used, but

study limitations (e.g.. expense, recruiting subjects to participate) typically constrain the size of the
population studied in panel studies (Baxter et al., 2013; Ozkavnak gt al., 2013; Jerrett et al ., 2005a; Sarnat

et al., 2000). Thus, methods are employed that use the limited observational data available from ambient

air quality monitoring regulatory networks (Solomon et al., 2011) and special, often intensive studies that
may be designed to provide data for exposure assessment and/or spatial characterization (Vedal et al.
2013; Hansen et al.. 2006; Edgerton et al.. 2005; Jerrett ¢t al., 2005b; Butler et al.. 2003; Hansen et al .
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[e.g., Jerrett et al. (2016); Turner et al. (2016); Villencuve et al. (2015); Pope et al. (2014)].

Ju—
N

13 Modeling PM exposure concentrations can be challenging because PM may contain a mixture of
14  components and is found in a continuum of sizes (Section 2.2). Approaches for modeling PM exposure
15 concentration can generally be used for different sized particles (PMio-25, PM2 s, UFP) and components,
16  though additional considerations may be involved. For example, there are very limited observational data
17 on UFP for cross-validation (Section 2.5); PM, s composition data from ambient monitoring networks are
18  typically available every few days (e.g., every third or every sixth day) using 24-hour integrated

19  measurements. Different observational techniques for PMig-2s, PM, s, and UFP have different biases and
20 uncertainties, and composition may influence biases and uncertainties within a given size fraction. Some
21  observed components (¢.g., OC) are composed of multiple compounds that behave differently in the

22 environment.

23 There are a range of approaches used to model PM exposure that are applied for specific
24 purposes, and their uses depend upon available data. Ozkaynak et al, (2013) developed a hierarchy of

25 methods based upon complexity, ranging from using ambient monitoring data as an exposure surrogate to
26  human exposure models accounting for time-activity data and microenvironmental exposure

27 concentrations (Figure 3-1). This list can be extended to include source apportionment models. The

28  amount and complexity of model input data increases with increasing complexity of the models.

29  Increasing the complexity of the exposure modeling methods may reduce exposure error in some cases
30 (Sarnat et al.. 2013b).

31 This section includes discussions of surface measurements (including fixed-site and personal
32 monitoring [Section 3.3]), modeling approaches (increasing in complexity from data averaging techniques

33 through microenvironmental models [Section 3.3.2]), and satellite-based methods (Section 3.3.3). Each of
34  these approaches has strengths and limitations, and several new studies discussed in Section 3.3.2.4.3 and
35 Section 3.3.3 blend observations and air quality model results to reduce exposure measurement error. An

36 analysis of the relative strengths and limitations of these methods for application in epidemiologic studies

37  isprovided in Section 3.3.5.
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Figure 3-1 Tiers of exposure models relevant to epidemiology studies and
input data types for each exposure model tier.

3.3.1 Surface Measurement

The 2009 PM ISA (LS. EPA, 2009b) discussed the use of ambient PM concentration data
measured at FRMs and FEMs and used as surrogates for PM exposures, and main points are summarized

in Section 2 4. The technology for measuring ambient PM at fixed-site monitors has largely stayed the
same. More attention is given in Section 2.4.3 to measuring UFP concentrations. New insights to help
interpret PMa s, PMio-2 5, and UFP concentration data for use in exposure assessment studies are provided

in Section 3.4.1.1.

The 2009 PM ISA (U.S. EPA, 2009b) described developments in using personal monitors for

exposure assessment. Specifically, developments in light scattering continuous monitoring

instrumentation, passive sampling, cascade impactor sampling for PM o5 s and PMs s, and use of GPS for
estimating time-activity were presented. Since then, new developments have been made in active
sampling of PMig 25, PM2 s, and UFP. Important developments include reducing the size and increasing
portability and battery life of samplers. These are described in Section 3.3.1.2.

3.3.1.1 Ambient Monitoring

Ambient PM data from FRM or FEM from individual sites continue to be used widely in health

studies as a surrogate for PM exposure concentration. (Pope et al., 2009; Zancbetti and Schwartz, 2009)

provide a number of reasons for the continued use of fixed-site monitor data as exposure surrogates:
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(1) instrument error is typically small compared to spatiotemporal modeling error, (2) an ambient monitor
may provide a comprehensive set of measurements, (3) the need to capture temporal variation is typically
greater than the need to capture spatial variation in short-term exposure studies, and (4) ambient monitor
data provide a useful reference for comparing population exposure concentration estimates in long-term
exposure studies. The ambient monitor approach is the least data intensive approach among all exposure

concentration estimation methods because it only requires data from a single monitor to represent
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exposures to a large area (on the order of 100 km?).

Differences in sampler design for PM: s, PMio— 5, and UFP influence the quality of exposure

concentration data available for epidemiologic studies of each respective size cut. For PM3 s samplers,
10 quality assurance testing has demonstrated that PM» s concentration measurements are replicable [(U.S.
11 EPA, 2004), Section 2.4.1.1], lending confidence to their frequent application in exposure assessment
12 studies. In contrast, PMio25 exposure concentration has been measured in three ways [dichotomous
13 samplers, differencing using concentrations from collocated PM o and PM; s monitors, and subtracting
14  arca-wide (e.g., county-wide) PMa s concentration from arca-wide PMio concentration] with large
15 differences in quality assurance (Section 2.4.2). It is expected that dichotomous samplers would produce
16  the most accurate measure of PMio-; 5 concentration for use as an exposure surrogate, because
17 dichotomous samplers are designed for isokinetic flow appropriate for each PM cut point. However, a
18  systematic study comparing all three methods has not vet been performed. Differences in spatial
19 variability of PM, s and PMio-2 s (Section 2.5) coupled with low-moderate correlation (Section 3.4.3.1)
20 suggest that area-wide differences would provide the least accurate measure of PMio-2 5 concentration for
21 use in exposure assessment studies. UFP is usually measured by condensation particle counters (CPC)
22 (Section 2.4.3 1) and at times by inertial impaction (Section 2.4.3.3). Testing of CPCs has shown that
23 CPCs may operate at 95% counting efficiency. However, concentrations measured by UFP samplers are
24 also more susceptible to negative bias due to larger evaporative losses compared with PMj s or PMig25
25 concentration measurements. Hence, there is generally higher confidence in PM» s concentration

26  measurements than in PMio-» 5 and UFP concentration measurements used as exposure surrogates.

3.3.1.2 Personal Monitoring

27 Methods for personal PM monitoring were described in the 2009 PM ISA (U.S. EPA, 2009b). At

28  that time, filter-based personal monitors were used most frequently. Developments at the time of the

29 2009 PM ISA included size selectivity of personal samples using a Personal Cascade Impactor Sampler
30 that can sample down to a cut point of 250 nm (Singh ¢t al ., 2003), a mini-cyclone with the capability of

31  sampling down to 210 nm {Hsiao et al.. 2009), and a two-stage cascade impactor for PM -2 5 sampling
32 (Caseetal., 2008). A passive monitor had also been adapted for PMjo-» s sampling (Ott ¢t al., 2008; Leith

33 etal, 2007) based on a passive sampler developed earlier that can be used for user-defined size fractions

34 including PM, s (Wagner and Leith, 2001a, b). Light-scattering detection devices for continuous
35 monitoring, such as the Personal DataRam (pDR, Thermo Scientific, Waltham, MA), the DustTrak (TSI,
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Inc., Shoreview, MN), and the SidePak (TSI, Inc., Shoreview, MN) for PM o or PM2 s mass concentration
and the P-Trak (TSI, Inc., Shoreview, MN) or personal CPC Model 3007 (TSI, Inc., Shoreview, MN) for
UFP count concentration were also described in the 2009 PM ISA. The P-Trak samples between 20 nm
and 1 um, and the CPC samples between 10 nm and 1 um. However, it is anticipated that the majority of
particles are smaller than 100 nm when measuring NC (see Preface). Additionally, the 2009 PM ISA
detailed new methodologies used by investigators to enhance personal sampling by incorporating
videotape (Sabin et al., 2003) or Global Positioning Systems (GPS) (Westerdahl et al.. 2005) into their

sampling protocols to estimate personal exposure by using simultanecous measures of exposure

concentration and time-activity data. Techniques discussed in the 2009 PM ISA are widely in use, and

techniques with sampling size fraction, speciation, mechanism, and error characteristics.

Table 3-1 New or innovative methods for personal sampling of PM exposure
concentrations published since the 2009 PM ISA.
Active or
Passive Size Error
Reference Sampling Sampler Fraction Species Mechanism Characteristics
Thornburg et al. (2009) Active Coarse Particulate PMio-25, NA Three-stage  PMio-2s -23%
Exposure Monitor PMas impactor (R>=0.81)
(CPEM) PMas: ~3%
(R?=10.91)
compared with a
dichotomous
PMio-25
sampler
Volckens et al. (2016) Active Ultrasonic PM2s NA Miniature -1.4%
Personal Aerosol piezoelectric  compared with a
Sampler (UPAS) pump witha PMas FRM
cyclone for
2.5 ym size
cut plus
additional
sensors for
air flow,
sunlight,
temperature,
pressure,
relative
humidity, and
acceleration
Rvan et al. (2015b) Active Personal UFP UFP NA Water-based +16%
Sampler (PUFP) CPC plus (R?=10.99)
GPS for
location
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Table 3-1 (Continued): New or innovative methods for personal sampling of PM
exposure concentrations published since the 2009 PM ISA.

Active or
Passive Size Error
Reference Sampling Sampler Fraction Species Mechanism Characteristics

Nash and Leith (2010) Passive Algorithm to UFP Yes Model of 6% compared
modify output from deposition with SMPS
the Wagner-Leith flux
passive sampler to developed
UFP the passive

sampler's
size range

Caietal (2014);, Caiet  Active Modification to the PMas BC Reduced 53 + 238%

al. (2013) Microaethalometer humidity and  difference in
(AethLabs, temperature  1-min readings
Berkeley, CA) fluctuations between the

through original and

addition of a  diffusion dryer

diffusion inlet on

dryer 97-100% RH
day and
5133%
difference
between original
and diffusion
dryer inlet on
65% RH day.
The differences
reduce to
approximately
1% when data
are averaged
over an hour.

Hagler et al. Active Algorithm to PMazs BC Introduced a  Comparison

(20113 Chengand Lin modify output from data cleaning between 1-min

(2013) the algorithmto  data with
Microaethalometer reduce optimized noise
(AethlLabs, erroneous reduction
Berkeley, CA) fluctuations in algorithm was

the signal comparable to

(i.e., noise) 5-min data
averaged with
noise

Sameenoi et al. (2012) Active Microfluidic Any RGS Incorporated Comparison
electrochemical DTT assay with traditional
sensor to detect into Particle  DTT assay:
oxidative potential into Liquid R?2=0.98
of PM Sampler

(PILS)

Sameenoi et al. (2013) Active Microfluidic Any RGOS Collected Comparison
paper-based PM2s and with traditional
analytical device PM1o on DTT assay:
(MPAD) to detect filters, bias = 10.5%,
oxidative potential desorbed, R2=0.98
of PM then pipetted

onto NPAD
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Table 3-1 (Continued): New or innovative methods for personal sampling of PM
exposure concentrations published since the 2009 PM ISA.

Active or
Passive Size Error
Reference Sampling Sampler Fraction Species Mechanism Characteristics
Landreman et al. (2008) Active Expose rat Any ROS Collected Response
macrophages to PMzs onto corresponded to
collected aerosol filters, spikes for
sample to detect desorbed, samples
oxidative potential then pipetted exposed to
of PM onto a 96-well different
plate seeded numbers of
with rat macrophages
macrophages (not
guantitative)

BC = black carbon; DTT = dithiothreitol; ROS = reactive oxygen species.

Prevalent field usage of continuous personal PM monitors using optical techniques necessitates
validation of these instruments, since calibration is not possible given that ambient PM does not have
replicable optical properties. Wallace et al. (2011) tested the 6 pDR and 14—16 DustTrak (number varied
with tests) for PM: s (with a size-selective inlet), and 14 P-Trak personal samplers for particle number to

measure UFP exposure concentrations to establish operational parameters (MDL, bias, precision, drift)
for each sampler compared with the median. MDL for the DustTrak and pDR were estimated to be

5 ug/m? and 5.5 pug/m’, respectively (not detected for the P-Trak), and relative precision was within 10%
for all four monitors. The pDR measurements were 60% higher than collocated personal gravimetric
samples from the field tests (R? = 0.7), and the DustTrak measurements were 164% higher than personal
gravimetric measurements (R? = 0.9). The authors pointed out that the higher readings from the
light-scattering instruments relative to the gravimetric measurements are dug in part to the lower density
of ambient PM relative to the density of the acrosol standard used for laboratory calibration. Another
factor Wallace et al. (2011) noted to influence the performance of light-scattering personal PM monitors

is relative humidity (RH). High RH results in sorption of water to particles and an increase in volume and
mass detected by the instrument. Quintana et al. (2000} found that pDRs produced much higher readings
than a gravimetric TEOM instrument when RH was above 85%, but that pDR readings tracked the TEOM
readings relatively well at RH values below 60%. Since indoor RH i1s generally maintained below 60%,

the influence of RH is likely to mainly affect outdoor light-scattering measurements, particularly in
morning, evening, and overnight hours when RH is highest. Optical personal samplers are subject to
errors given the inability to calibrate the monitors for ambient characteristics. The characterization work
described above has been done for optical sampling of PMa s, so uncertainties are greater for the PMyo-25
and UFP size fractions. Instrument error and replicability and the factors that affect them must be

evaluated for each use in panel studies.
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3.3.2 Modeling

At the time of the 2009 PM ISA (LS. EPA, 2009b), fine-scale exposure prediction models were
still relatively nascent in their development. Methods reviewed include time-weighted
microenvironmental models and stochastic exposure models for estimation of PM exposure and
dispersion models, LUR, and GIS-based modeling approaches for estimation of PM exposure
concentration, and attention was given to the models” limitations in adequately capturing spatial
variability of PM concentration, particularly for more variable UFP and PMi.25. Since the 2009 PM ISA,
more approaches to spatial averaging of concentrations used for estimating exposure concentrations
surfaces (Section 3.3.2.2), LUR (Section 3.3.2.3), and dispersion models (Section 3.3.2.4.2) have
appeared in the peer-reviewed literature. Additionally, there has been growing use of chemical transport
models (CTMs) in exposure assessment studies (Section 3.3.2.4.1) in recent years. Table 3-2 provides an
overview of the modeling approaches discussed in this section.

The models discussed in the following sections are typically validated by the study authors using
surface monitoring data, but model validation is not performed consistently across the literature. Table 3-
3 lists performance measures that have been utilized in the recent PM exposure modeling literature.
Model performance is typically evaluated for bias or error using both absolute and relative (or

normalized) metrics.

Table 3-2 Comparison of models used for estimating exposure concentration
or exposure.

Type of Model
Satellite
Data IDW/ LUR/ CTMand and
Factors? averaging Kriging ST Hybrid Dispersion Hybrid Microenvironmental
Type of C Cc C C C Cc E
model
Distance X X X X X X X
from source
Emission X X X X X
rate
Terrain or X X X X X
land use
Dispersion X X X X
Chemistry X X X X
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Type of Model

Satellite
Data IDW/ LUR/ CTM and and
Factors? averaging Kriging ST Hybrid Dispersion Hybrid Microenvironmental
Human X
activity
Infiltration X
Inhalation X

C = concentration model, CTM = chemical transport model, E = exposure model, IDW = inverse distance weighting, LUR = land
use regression, ST = spatiotemporal models.

aFactors that may be available in each model are checked.

Table 3-3  Statistical measures used for air quality model performance
evaluation.

Performance Measures Definition®

N

1

NZ(PL' - 0;)
=1

Mean bias (MB)

Mean error (ME)

N

1

sz - 04l
=1

Root mean square error (RMSE)

1 2”
— (P, — 0,)2
N =1 i i

Coefficient of determination (R?) 2
{2iL1(0;—0)(P, ~ P)}
%.(0:-0) S (P - P)

2P, and O, are prediction and observation at the ith monitoring site, respectively; N is the number of monitoring sites.
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3.3.21 Data Averaging

1 Averaging measurements from all monitors in a study area is frequently used to mitigate some of
2 the errors associated with using data from a single ambient monitor to estimate exposure concentrations
3 for a population. There are many averaging approaches in use to provide more representative exposure
4 concentration estimates than those derived from a fixed-site ambient monitor. For example, Strickland et
5 al. (2011) compared nearest fixed-site monitor concentrations of PM, s and PM» s components (SO4>", OC,
6  EC) averaged over 24 hours with concentrations averaged over three monitors (unweighted). They found
7 that PM, s and PM,s—SO4* mass concentrations were within 8% of each other, with strong correlations
8  between the concentration obtained by a fixed-site monitor and with that obtained by a
9  population-weighted average Spearman R = 0.969. Reported PM2 s oc concentrations had a Spearman
10 correlation of R = 0.847, but more spatially varying PM:s-sc had a Spearman correlation of R = 0.831.
11 Goldman et al. (2012) had similar findings when comparing nearest monitor with unweighted averaging.
12 Strickland et al. (2013) compared unweighted averages across monitors with concentrations measured at
13 fixed-site monitors and concentrations estimated to be the “true” exposure concentrations at grid cells
14 within the study domain. The fixed-site monitor produced PM- s concentrations with the largest biases of
15 —31.3%, in comparison with the unweighted average (—9.0%). Biases for PM, s components (SO4%", NOs~,

16  NH4", EC, OC) were similar for both the fixed-site monitor and unweighted average. In the unweighted
17 averaging technique studied by Strickland et al. (2013), temporal variability may be dampened, leading to

18  Berkson errors. As described below, more spatial heterogeneity inherent to the exposure concentration
19 ficld implies greater Berkson errors.

20 Spatial averaging techniques include area-weighting and population-weighting (Vaidvanathan et

21 al., 2013). Such schemes require some type of spatial modeling of data before averaging. For example,
22 area and population-weighting might involve use of a regression model of PM or PM component
23 concentration and population density, land use, or emission estimates to develop exposure concentration
24 estimates at grid locations. Concentrations for census tracts, zip codes, or counties can then be averaged
25 and weighted by the associated areas or populations. In such schemes, the objective of the spatial

26  modeling is to develop more representative area or population estimates.

27 Population-weighted averaging is designed to reduce bias in the health effect estimate by giving
28  greater weight to the locations where more people live. As part of the study referenced above, Strickland
29 etal. (2013) compared population-weighted averages across monitors with concentrations measured at

30 fixed-site monitors and concentrations estimated to be the “true” exposure concentrations at grid cells

31 within the study domain. The population-weighted average produced PM; s concentrations with biases of
32 —8.1% in comparison with the true PM, s exposure concentrations. Biases for PM, s components (SO4*,
33 NO;7, NH4", EC, OC) were similar for both the fixed-site monitor and unweighted average. Strickland et
34 al. (2011) compared nearest fixed-site monitor concentrations of PMa s and PM: s components (SO, OC,
35 EC) averaged over 24 hours with concentrations averaged using population-weighted averages. They

36 found that PM,s and PM,s—SO.4? mass concentrations were within 8% of each other, with correlations
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among the three spatial representations ranging from Spearman 2 = 0.963—0.995. Reported PM2 5 oc
concentrations had Spearman correlations of R = 0.891, but more spatially varying PMs s-gc had
Spearman R = 0.804. Goldman et al. (2012) had similar findings when comparing nearest monitor,

unweighted, and population-weighted averaging. These results suggest that population-weighted
averaging may provide a small improvement over unweighted averaging for estimation of exposure

concentration.

Spatial averaging approaches may influence exposure measurement error (Goldman et al., 2010)

and associations between short-term PM, s exposure and health outcomes (Goldman et al., 2012). In the

latter study, the authors noted improved population-weighted R? values (relative to the fixed-site ambient
monitoring method) between exposure concentration metrics estimated using data averaging methods and
the simulated “true” ambient concentration field. For example, the R* values increased from 0.25 for a

fixed-site ambient monitoring method to approximately 0.38 for data averaging methods.

Various methods can be chosen for temporal averaging, such as straight arithmetic averaging or
methods that account for site-specific variability and that also account for the lack of some observations
during the period. Temporal averaging is used to estimate exposure concentrations over different time
intervals. Hourly and daily measures are averaged to provide metrics of interest (e.g., daily, weekly,
monthly, seasonal, and annual). Darrow et al. (2011) tested different averaging intervals and found that

I-hour daily max PM: s concentrations had high correlation with 24-hour average (Spearman R = 0.82)
and moderate correlations (Spearman R = 0.75 and 0.68) with commuting time (7:00-10:00 and
16:00-19:00) and daytime (8:00—-19:00) average PM: s concentrations, respectively. As with the
development of spatial averages, the objective of temporal averaging is to minimize error that might be
introduced due to missing data from a time-series, so that diumal, weekly, seasonal, or annual trends can

be well characterized.

Spatial and temporal averaging methods provide a mechanism for interpolating where data are
missing over space or in a time-series, respectively. The literature shows that averaging techniques
produce some bias when compared with true exposure concentrations, but averaging techniques do

present an improvement over using data from a single fixed-site monitor.

3.3.2.2 Spatial Interpolation Methods

The single fixed-site ambient monitor and methods that average concentration data across
monitoring sites in an arca both lead to exposure concentration estimates with no spatial variation. When
spatially resolved estimates of PM exposure concentration are desired, a variety of approaches are
available for two-dimensional interpolation of observations ranging from smoothing techniques

spatial interpolation methods exist that use multiple monitors to provide spatially varying ficlds. Such
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1 methods include: inverse distance weighting (IDW), inverse distance squared weighting (ID2W) (Hoek et
al., 2002), and kriging (Mercer et al., 2011; Whitworth et al., 2011).

[\

IDW, in which ambient PM concentration at a receptor point is calculated as the weighted
average of ambient PM concentration measured at monitoring locations, is a commonly used simple
interpolation method [e.g., Tai et al. (2010)]. Several variations of IDW have been used to estimate
exposure based on ambient PM concentration surfaces. The weighting factor is an inverse function of

distance between the receptor and the monitor. For example, Brauer ¢t al. (2008) and Maclntyre et al.

o8 1 N i e W

using an IDW sum of ambient PM» s concentration and the three closest monitors within 50 km. Often, the
10 weighting factor is the inverse distance raised to some power, and a higher power is applied to increase

11 the weight on monitors that are closer to the receptor. Rivera-Gonzélez et al. (2015) applied an ID2W

12 model and compared the results with a citywide average, use of the nearest monitor, or kriging for

13 development of an ambient PM; 5 concentration surface. The results from IDW were correlated with the
14 other city-wide averaging, nearest monitor, and ordinary kriging (Pearson R = 0.83—-0.99), and the mean
15 ambient PM» s concentration estimated with IDW was within 5% of the mean computed with the other

16  methods. Neupane et al. (2010) compared estimates of the ambient PMa» 5 concentration surface calculated

17 using IDW with a PM» s concentration surface calculated using both bicubic spline interpolation. Bicubic
18  spline interpolation produced a lower mean ambient PM» s concentration and larger IQR compared with
19  IDW. Because there is no reference value in these studies, it is difficult to conclude that IDW presents any
20 substantial improvement in prediction accuracy compared with other methods. These findings indicate

21 that the results of IDW are comparable to methods that average concentrations across monitors and to

22 methods that smooth concentration surfaces when estimating PMa s concentration.

23 Kriging 1s a set of well-established methods that use observed covariance for geostatistical
24 interpolation [e.g., Beglen et al. (2009)]. Recent developments have been made to improve kriging

25 techniques. Pang et al. (2010) developed a space-time Bayesian Maximum Entropy (BME) model and

26 compared it with ordinary kriging (OK). OK assumes linearity between data points, and it also assumes
27  that the data are normally distributed. BME is not restricted to linearity or normality and so can draw on
28  different sources of information, such as space-time relationships between variables and probability

29 distributions describing the concentration dataset, to address missing data. Pang et al, (2010) found that
30 estimation errors were 2—4 times larger for OK compared with BME. The ability to apply nonlinear

31  models to address missing data thus provide BME-kriging approaches greater accuracy in modeling PM: s
32 concentration surfaces.

33 Berkson-like error in the estimated exposure concentration may arise from smoothing inherent to
34 gpatial interpolation models, such as IDW and kriging (see Section 3.2.1 for definition of Berkson-like

35 error). The potential for Berkson-like error may be evaluated by cross-validation across receptor locations
36 distributed over space, and the statistical performance of spatial interpolation methods may vary from

37 study to study. When an interpolation model is fit using a relatively sparsely distributed monitoring
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network, Berkson-like errors in estimated exposure concentration can be substantial (Alexeeff et al.

2015; Whitworth et al.. 2011). All of the spatial interpolation approaches will produce spatially smoothed

pollutant exposure concentration fields from monitoring data. However, spatial and temporal variabilities

S I

not captured by monitors are also not captured by these approaches.

If the quantity of data is small in each given site, or if the quality of the data obtained at the
monitors is low, then classical-like error may arise (Szpiro et al., 2011a). If there are few observations, all

of the interpolation methods suffer. This includes kriging, which depends on developing a variogram.

With few observations at the monitoring locations, there is limited information to determine the

o8 -1 N

functional coefficients used for kriging (e.g., the nugget, sill, and range). Weighting schemes for the
10 interpolation models may amplify these errors (Wong et al., 2004).

3.3.2.3 Land Use Regression and Spatiotemporal Modeling

11 Direct spatial interpolation of PM exposure concentration and methods that employ static

12 parameters to capture spatial variance can lead to excessive spatial autocorrelation when spatial

13 varability of PM is high (Krewski et al., 2009). PM: s tends to have less spatial heterogeneity than

14 PMio 25 or UFP (Section 3.4.2) given secondary production (U.S. EPA, 2009b), but high concentrations
15 can still occur near primary sources. Statistical approaches that utilize data that vary over space and time

16  can address this limitation. Geographic information system (GIS) models are being used to incorporate

17 land use, emissions data, and geographic covariates into PM exposure concentration estimates. Two types
18  of models are covered in this section, LUR and spatiotemporal models. LUR models regress observed PM
19  concentrations on land use (and sometimes additional geographic) covariates and then use the model to

20 predict exposure concentrations where PM is not measured (Hoek et al., 2008a; Rvan and Lemasters

21 2007). Spatiotemporal models tend to incorporate kriging or autocorrelation into the response variable,
22 which is then fit to the land use and geographic covariates [e.g., Sampson et al. (2013)].

3.3.2.31 Land Use Regression

23 LUR is an empirical approach to estimate exposure concentrations, often at very high resolution
24 in more densely populated locations, by relating observed concentrations to the detailed information on
25 land use. The basic approach is to develop an equation, via regression, relating observed pollutant

26  concentrations (Hoek et al., 2008a; Rvan and Lemasters, 2007) to land use characteristics and other

27 inputs:

Y(Si, tj) = ﬁO(Sir tj) + Z'Bl’k(si’ tj)Xk(Si) t]) + E(Si, t})
k

Equation 3-8
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Here, Y(s.t;) is the observed concentration at location (monitor) s; (where 1 1s a monitor location)
and time t;, By and 5y ; are the regression coefficients (intercept and slopes that are potentially spatially
and temporally varying, but may also be constant in time and space), X are the independent variables
(c.g.. land use or meteorological parameters that may vary in time and/or space), k is the index indicating
type of land use, and € is the residual error term. f; 1s also called the additive bias and £ 4 the
multiplicative bias. Other forms of LUR models are also used. While the regression equation often is
linear in the independent variables (as shown above), it can include nonlinear and mixed terms,

particularly if there is specific knowledge of the relationship between a concentration and a variable that

=R R e Y . B

would suggest a specific functional form. The resulting regression equation can then be used to predict

—
<

exposure concentrations at other times (t) and locations (s) where observations are not available.

11 Recent studies demonstrate typical LUR model performance, performance evaluation, and
12 variability between cities. Eefiens et al. (2012) evaluated the application of LUR models in 20 cities in
13 Europe for PMz s, PMio, PM> s absorbance, and PMo 2 5. First, the models for the various cities had
14  substantially different independent variables used in the final models, as well as coefficients associated

15 with similar independent variables, demonstrating the location-specific nature of the models. Second, the
16  in-sample R? of the various city models varied between 35 and 89% for PM, s and between 32 and 81%
17 for PMy, 2. Evaluation using a leave one out cross-validation (LOOCV) produced R? levels of 21 to 79%
18 for PM;s and 3 to 73% for PMo-» 5. R? was not consistent between each city. Wang et al. (2014)

19 expanded on the same model for PM; s in thirty-six European cities. They found a LOOCV R? of 81%

20 (RMSE = 2.38 ug/m’) for cities where the model was fit. However, Wang et al. (2014) tested

21  transferability of the model to areas where the model was not fit, and R? dropped to 42%

22 (RMSE = 1.14 pg/m?). Estimation of PMj, 25 in the LUR can be accomplished using the difference

23 between the PMi; and PMzs LUR models, since each model was trained using PMi, and PMs 5

24 concentration data. However, low LOOCV R? for PM, 15 in select cities may have been related to how

25 measured PM - 5 concentration was calculated for the validation dataset. If reference PMio— 5

26  concentration was calculated by the difference of two collocated monitors rather than by a dichotomous
27  sampler, flow rate differences could cause some error in the reported PMio-2 5 concentrations. If PMip-2 5
28  was calculated by the difference between concentrations measured by PM;o and PM; s monitors that were
29 not collocated, then errors would likely be larger.

30 Several features of LUR have the potential to limit the accuracy of modeled exposure

31  concentrations. Beckerman et al. (2013a) noted that two major limitations with LUR are variable selection

32 and how to best deal with unbalanced repeated measures, potentially involving arbitrary decisions in the
33 model building process. They used a generalized linear model with a deletion/substitution/addition

34  machine learning algorithm to model PM; s, resulting in an out-of-sample R? of 0.65 based on fivefold

35  cross-validation (n-fold cross-validation means that 1/n of the data are reserved for validation with the

36 rest used for model training, and the process is repeated n times). The ability of an LUR method to relate
37  air pollutant concentrations to specific land uses, and thus estimate high resolution exposure concentration
38  fields, s directly dependent on having sufficient numbers of observations in time and/or space to develop
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the regression equation with reasonable uncertainties in each of the coefficients (Wang et al., 2014). The

sparseness of the routine monitoring networks may incur Berkson-like error in the exposure estimates.
More intensive studies may be conducted where additional monitoring data are available (sometimes
called saturation monitoring if the additional monitors lead to extensive spatial coverage). Saturation
sampling can also lead to introduction of classical-like error in the exposure predictions if different
measurement methods are used and differences in the methods are not fully understood (Vedal et al.,
2013; Levvetal., 2010).

A related weakness of LUR is its limited generalizability when the monitor and study participant
locations are different. The developed regression equations are usually restricted to the study region
(typically city-scale) alone and may not be directly applied to another region, due largely to the empirical
nature of LUR (Wu etal., 2011; Jerrett et al., 2005a). Local PM data are required to calibrate LUR
models, and measurements must be available that estimate the spatial patterns of exposure concentrations.

For example, Patton et al. (2015) found during estimation of UFP exposure concentrations in Boston

urban neighborhoods that models fit to one neighborhood did not necessarily provide robust estimates of
particle NC for another neighborhood, and acceptable model performance required calibration with local
data. Hoek et al. (2008a) also reviewed the performance of the LUR model regarding their application for

PM. 5 given differences between where the model was fit and where it was used for predictions. R* values
for the developed LUR models for PM: s ranges from 0.17 to 0.69, with substantially lower out-of-sample
R? in evaluation (0.09—-0.47, with fewer studies performed evaluation/cross-validation). This suggests that
comparing performance statistics between cities, even when using one method (in this case, LUR) can
vield very different performance and that using cross-validation reduces performance, but to a degree that
is not predicable from the full model R?. This work was extended by Wang et al. (2013) to show the
association between the LOOCV R? and a health outcome (forced vital capacity: FVC). For models of

PM, s, Wang et al. (2015) note that cross-holdout validation, where the model is rebuilt after removing

data from a site and retraining the model using the same variables, may be more appropriate than
traditional LOOCYV for assessing LUR performance, particularly when there are a small number of
training sites, because it makes use of all data in the model evaluation process instead of leaving out a
portion of the data. In summary, LUR models can have relatively good validation (0.4 <R?<0.7), even
for spatially variable PMio 2 5, but good validation will only occur when the model is used to predict

concentrations in the same geographic area where it was fit.

Although LUR models have been used to estimate long-term (¢.g., annual) average PM exposure
concentrations within large metropolitan arcas by using variables such as road type, traffic count, land
cover, and topography (Gulliver et al., 2011; Hoek ¢t al.. 2008a) and can be applied to current or

historical conditions (Hystad et al.. 2013), LUR has been used less frequently for time-series exposure

studies. Land use variables (e.g., elevation, road-type, distance to road, land cover) usually do not vary in
time. Temporal variation in the model is gained by including both the available observations and other

temporally-varying inputs, such as meteorological parameters. As part of the New York City Community
Air Survey (NYCCAS) in which PM. s samples were collected from 150 sites across the five boroughs of

SECTION 3.3: Methodological Considerations for Use of Exposure Data and Models
August 2018 3-22 DRAFT: Do Not Cite or Quote

ED_002220_00002287-00283



New York City, Ross et al. (2013) built a LUR for application in a birth defects exposure study and
developed a temporal adjustment procedure to increase the temporal resolution of PM, s exposure
concentration estimates to 2 weeks. This was accomplished by multiplying an LUR derived for one year
by the ratio of 2-week averages to annual averages. Validation of the method using data from a second
year of measurements produced out-of-sample R? of 0.83 (R? = 0.88 if two outliers were removed from
the dataset). Dons ¢t al. (2013) aimed to fit a LUR model of black carbon (BC) concentration to hourly
data for a time-activity exposure study. However, they observed that many variables became insignificant

when inputting hourly data into an annual model. Dons et al. (2013} instead built a LUR for hourly data

NoRie T B R T IS S O R

using static and dynamic variables in different models. They found that LOOCV R? varied from 0.13 to

—
<

0.78. Higher R? but also higher RMSE were observed during the late morning to evening hours for the

[u—
[

model with dynamic variables. These studies demonstrate that LUR can be extended to study temporal

Ju—
N

variability of PM> s and BC, but caution must be used for application in time-series studies since model

[—
(98]

accuracy is sometimes low.

14 Recently, LUR has been applied to predict spatial distribution of PM» s components. As part of
15 the NYCCAS study, Ito ¢t al. (2016} speciated the collected PM, s samples and built a LUR model to

16  predict PM» s components concentrations across New York City. The temporal adjustment described

17 above from Ross et al. (2013} was applied in the Ito et al. (2016) study, as well. LOOCYV was used to test

18 the models, and models for PM, s mass and several components (Ca, Ni, V, and Zn) produced R*> 0.8.

19 Several other components produced R? in the range of 0.6—0.7 (Cu, Fe, K, S, and Si), and others produced
20 R?<0.5 (Al Br, Mn, Pb, and Ti). Spatial coefficient of variation (CV) was calculated for each component
21 model, and high spatial varnability did not always correspond to low LOOCV. For example, Ni had a

22 spatial CV of 0.70 and LOOCV R? of 0.85, while Mn had a spatial CV of 0.68 and LOOCV R? of 0.36.

23 The LUR models were then applied to a source attribution analysis in which 50-1,000 m buffers were

24 placed around sources, and then annual average concentrations for each component modeled by the LUR
25 were compared to the sources within those buffers.

26 In summary, new developments for LUR include adaptation of LUR models for short time

27 resolutions and for spatially variable size fractions (UFP, PMio-25) of PM and PM: s componerits

28  (e.g., Ca, Cu, Fe, K, Ni, S, 5i, V, Zn). At the same time, several studies have improved characterization of
29  errors and uncertainties in LUR modeling and how best to quality assure those models. Several studies

30 drew attention to poor validations produced when LUR models were fit to one geographic area and then
31  applied to another. Similarly, lack of spatial correlation between predicted concentrations at the model

32 receptors and actual exposure concentrations of study participants can lead to Berkson-like error, and

33  incompatibility of methods to model and measure PM can lead to classical-like errors (see error type

34  definitions in Section 3.2.1).
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3.3.23.2 Spatiotemporal Modeling

A GIS-based spatiotemporal model provides a useful tool for large-scale spatiotemporal analysis.
GIS-based mapping such as kriging utilizes the covariogram for statistical smoothing but may lead to
invalid spatial features due to insufficient data for characterizing spatial variation. Generalized additive
models that describe regional and small-scale spatial and temporal (monthly) gradients (and
corresponding uncertainties) were developed for PMio-25 and PMa 5 over the U.S. for 1998-2007 for use
in health studies (Yanosky et al., 2014). Model validation was higher for PM; s (out-of-sample R?> = 0.77,
normalized mean bias factor, NMBF = —1.6%) compared with PM,o» 5 (out-of-sample R*> = 0.52,

NMBF = -3.2%). Bias increased and precision decreased for PMig2 s compared with PM» 5. Spatial
covariates, including elevation, urbanized land use within 1 km, county-level population density, distance
to roadways of moderate to heavy traffic, and point-source emissions density were all determined by the
authors to be important predictors of PM; 5, although the authors did not present data for the relative
contribution of each variable to the model. Yanosky et al. {2009) developed spatially and temporally

resolved concentration ficlds of PM: s and PMo— 5 to be used as exposure concentration estimates in
long-term exposure studies for the northeastern and Midwestern U.S. Out-of-sample R? for the PM; 5
model was 0.77 with precision of 2.2 ug/m?® for 1999 to 2002, compared with out-of-sample R? for the
PM;io-2 5 model of 0.39 with precision of 5.5 pug/m’. The IDW method was applied as an alternative to
compare with a semiempirical model. For a PM, 5 concentration field developed for 1999 to 2002,
cross-validation results for IDW show reasonable performance with out-of-sample R* = 0.60 (and
cross-validation results for IDW were not available for PMig 2 5).

Recent studies have attempted to estimate spatially resolved PM: 5 exposure across larger regions

of the U.S. for application in epidemiologic studies. For example, Sampson ¢t al. (2013) developed a

model combining universal kriging that builds from regional partial least squares regression LUR models
with categorical variables describing land use, population, emissions, vegetative index, roadway type,
impervious surfaces, and proximity to features. Results of cross-validation with 10-fold cross-validation
produced out-of-sample R* = 0.52—0.63 at the national scale and R* = 0.84—0.88 at the regional scale.
Keller et al. (2015) applied this model to PM; s and BC prediction in the six MESA Air cities (Baltimore,
MD, Chicago, IL, Los Angeles, CA, New York City, NY, St. Paul, MN, and Winston-Salem, NC) and
obtained out-of-sample R? of 0.82—0.91 for PM: s and 0.79-0.99 for BC (using both AQS and MESA Air
monitors for cross-validation). Bergen et al. (2013) applied a similar method for four PM» s components:
EC, OC, silicon, and sulfur, and the out-of-sample R? ranges from 0.62 to 0.95. Kim et al. (2015)

examined PM- s component networks for suitability of the data inputs for applying spatiotemporal models

for PM component exposure concentrations, and they found that the Chemical Speciation Network (CSN)
and Interagency Monitoring of Protected Visual Environments (IMPROVE) networks were too sparse to
fit the model. They found that the greater density of the National Particle Component Toxicity (NPACT)
study network, set up outside study participants” homes, would be needed to fit the model. Additionally,
differences among the three networks with respect to averaging times, quality assurance, and pump flow

rates, complicates the ability to combine networks into one database for fitting the model.
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Recent developments in spatiotemporal modeling have enabled modeling of larger geographic
regions and to overcome some of the limitations of kriging. In some cases, these models have been fit
with good accuracy and precision. However, differences in model calibration in different regions

introduce model errors, and sparse networks have been found insufficient for model fitting.

3.3.2.4 Mechanistic Models

Improvements in computational resources have led to mechanistic models (see Section 2.4.7 fora
description) that are more amenable to exposure assessment studies, because they provide finer spatial
resolution over larger domains and can include more components, more sources, and longer time periods
compared with previous versions of CTMs (Garcia-Menendez et al., 2015; Ivev et al , 2015; Liet al.
2015; Tumeretal., 2015; Hu et al.. 2014d; Burr and Zhang, 2011; Civerolo et al.. 2010; Wagstrom et al.,

transport and physical and chemical transformations of pollutants (Semnfeld and Pandis, 2006). Turbulent

diffusion is typically treated by using atmospheric dispersion coefficients or diffusivities. Mechanistic
models may be used to characterize exposure concentrations where monitoring data are limited or not

available.

3.3.24.1 Chemical Transport Model Applications for Exposure
Concentration Estimation

CTMs commonly utilized for exposure concentration modeling in the U.S. include the
Community Multiscale Air Quality (CMAQ) model, Particulate Matter-Comprehensive Air Quality
Model with Extensions (PM-CAMx), and the University of California at Davis/California Institute of
Technology (UCD/CIT) CTM (Gavdos et al.. 2007; Bvun and Schere, 2006; Kleeman and Cass, 2001;
Russell et al., 1988) at the urban-to-regional scales and global models such as the Goddard Earth
Observing System CTM (GEOS-Chem) and Comprehensive Air Quality Chemistry Model (CAM-Chem)
(Garcia-Menendez et al.. 2015; Bev et al.. 2001). The European Air Pollution Dispersion and Chemistry
Transport Model (EURAD-CTM) has been used in Europe for PM and related exposure concentration
modeling (Weinmavr et al.. 2015; Nonnemacher et al.. 2014), and GEM-MACH is being used in Canada
(Peng et al., 2017). More specialized models may also be used to model specific sources, such as forest
fires (Rappold et al., 2014).

CTMs are typically applied over grid sizes of 1 km or more, depending upon the application
(while grid resolutions of less than 10 km are used over urban areas, continental scale applications
typically are done at about 10—40 km, and global scale applications with larger grids yet). Nested grids
are used to achieve a range of resolutions in many applications (Isakov et al., 2007; Bvun and Schere

2006; Zhang et al., 2004). In some applications, CTMs are coupled directly (i.¢., on-line) to a
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2010). Inputs include meteorological parameters (e.g., wind speed and direction, temperature, relative
humidity, etc.) throughout the vertical layers of the atmosphere up to and including portions of the
stratosphere and source emissions. The model outputs are the pollutant concentrations, and how they vary
studies of air quality. The ambient concentration fields are also used as inputs to microenvironmental
models for estimating exposure (Baxter et al.. 2013; Jones ¢t al.. 2013; Georgopoulos et al.. 2005; Burke
etal., 2002).

CTM models have been used for estimation of exposure concentrations, including for use in
epidemiologic studies, both in North America and abroad (Ostre et al., 2015; Weinmavr et al., 2015;
Anenberg et al., 2014; Marshall et al., 2014; Nonnemacher et al.. 2014; Silvaetal., 2013; Westet al.,
2013; Limetal., 2012; Tagaris et al., 2010). For studies covering a large geographic area, CTM models

can provide location-specific estimates without gaps in coverage. Issues with using CTM models relevant

(2015} to assess the associations of PM» s and UFP with health in a cohort epidemiologic study. When
evaluating the model against monitoring data, they observed low error for PM» s mass compared with
error for individual components, such as SO4*". In general, errors were higher when matching
observations and simulated values on a daily basis compared with monthly and annual averaging periods,
suggesting that model results are more accurate over longer averaging times. They did not report RMSEs
or R?. They noted one advantage of using model results over ambient monitoring was the availability of
PM component concentrations every day, versus one out of three. Hou ¢t al, (2015) extended the

application of CMAQ to the study of human health effects by using the emissions input data to calculate
the sensitivity of PM. s concentrations to EGU and non-EGU emissions from four regions of the U.S. The
sensitivities were then used to estimate changes in mortality as a function of PM» s exposure
concentrations and sensitivity of mortality to regional EGU and non-EGU emissions. Bravo et al. (2012)

simulated PM s over the eastern U.S. using a 12 kmx 12 km grid with a normalized mean bias of 2.1%
over the course of a year. However, PM: 5 concentrations were underestimated by up to 27% in summer

and by up to 32% in late fall. In a related study, Mannshardt et al. (2013} compared results using

observations and CMAQ-estimated exposure concentration fields in a study of PMaz s and O3 associations
on emergency hospital emissions in three counties of New York City for 2002-2006. CMAQ was run for
the eastern U.S. using 12 km grids and used as input to a human exposure model, SHEDS-PM.

Results from CTMs can be biased and subject to various errors due to inputs and model
parameterizations, but factors leading to simulation errors continue to be identified and reduced [e.g., Yu
gtal. (2014); Barsanti et al. (2013); Back et al. (2011); Folev et al. (2010}]. For example, PM chemistry

modules in CMAQ have been added and revised to address limitations in modeling secondary organic PM

formation and nitrate chemistry. Nonetheless, biases and errors persist that may have weekly and seasonal
trends due to limitations in emission inventory specifications and chemical and meteorological inputs,

respectively. Nolte et al. (2015) compared MOUDI measurements of PM size distribution with
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predictions of size distribution (ranging from 0.05 to 20 um) for several PM components (SO42, NOs,
NH.", Na', CI", Mg,", Ca,", K") at different sites. Nolte et al. (2015) observed discrepancies between the
modeled and monitored size distributions where the emissions data were not accurate. Typically, where

data were omitted from the NEI, modeled size fractions were negatively biased so that exposure
concentrations would be underestimated for those size fractions. Differential bias may also be observed

across regions in space. Many such biases can be corrected for using adjustment factors based on

~3 N WU B W N e

comparisons of simulation results with observational data.

The dearth of ambient UFP observations, given that necessary instrumentation is not standard to
routinge monitoring networks (Section 2.4.5), has limited development and validation of CTMs at this size
10 fraction. UFPs are derived from both direct emissions as well as atmospheric nucleation, and they
11  coagulate on shorter time scales than larger particles (Section 2.3.4). Their concentrations can vary
12 rapidly, and there is an observed steep spatial gradient in NC near sources, ¢.g., within a few hundred
13 meters of highways (Karner et al., 2010; Zhou and Levy, 2007), suggesting finer resolution modeling

14 should be used when using models to estimate exposure fields for UFPs. The lack of emissions
15 information on UFPs also complicates CTM development. Hu et al. (2014a) and Hu et al. (2014b)
16  developed source-based CTMs to predict PMo; mass concentration surfaces for estimation of exposure

17 concentrations that were used in an epidemiologic study by Ostro et al. (2015). The model included

18  emissions, advection, diffusion, wet deposition, and dry deposition, but it omitted gas-to-particle phase
19 chemistry, gas-to-particle phase conversion, nucleation, and coagulation. Hu et al. (2014b) used a

20 4 km x 4 km grid, which creates uncertainties because it is larger than the spatial scale over which UFPs
21  evolve. They noted the need for either fine grid resolution or a subgrid scale model such as large eddy

22 simulation to capture finer-scale dynamics. Hu et al. (2014b) reported Pearson R = 0.92 for comparison of

23 PMy 1 mass concentration predictions with measurements and Pearson R = 0.94 for comparison of PMo
24 EC mass concentration predictions with measurements. Bias was not reported, but the authors noted that
25 model performance degrades for PMy 1 mass concentration >4 pg/m? or <1 pg/m? and for PMy; EC mass
26  concentration >1 pg/m’ or <0.2 ug/m’. Using SEARCH data to evaluate CMAQ performance for

27  application in epidemiologic studies, Park et al. (2006) found that CMAQ did not capture UFP dynamics

28  well, finding biases of an order of magnitude and more in NC. Elleman and Covert (2010, 2009a), and
29 Elleman and Covert (2009b) also found that CMAQ did not accurately predict UFP numbers. They linked

30 the biases to the treatment of particle nucleation, emissions estimates, and how the size distribution is

31  captured. Stanier et al. (2014) developed a nonlinear, Lagrangian trajectory model designed to capture the

32 size distribution of UFPs, and applied it to simulate UFPs in the Los Angeles area for a period when more
33  detailed observations existed. They were able to reproduce NC within a factor of two 94% of the time at
34 the four sites being used in the evaluation. In a comparison of 12 different nucleation parameterizations,
35 Zhang et al. (2010a) found that the predicted NC of Aitken mode particles can vary by three orders of

36  magnitude. These recent efforts illustrate that the large uncertainties in UFPs are still a great limitation in

37  applying CTMs to model UFP exposure concentration.
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Several new developments in CTM have made the technology more amenable for application in
exposure assessment, such as improvements to the model through bias correction methods. However,
several limitations still exist, including large grid sizes, uncertainties regarding emissions inputs, and
uncertainties in modeling UFP. Specific modeling decisions must therefore be evaluated when CTMs are
employed in epidemiologic studies.

3.3.24.2 Dispersion Modeling Applications for Exposure Concentration
Estimation

Dispersion modeling has been performed to develop relatively fine resolution PM exposure

concentration fields (Jerrett et al., 2005a). Dispersion models describe the relationship between emissions,

meteorology and the resulting pollutant concentrations using algebraic relationships (e.g., the Gaussian
Morawska, 2006). Examples of dispersion models include AERMOD, Research LINE-Source Model (or
R-LINE), Community LINE-source Model (C-LINE), and California LINE Source Dispersion Model
(CALINE) (Barzvk et al., 2013; Snvder et al.. 2013; Cimorelli et al., 2005; Perry et al., 2005; Benson
1992).

Model intercomparison has more recently focused on near-road dispersion modeling. Heist et al.
(2013) conducted an intermodel comparison of AERMOD, CALINE, ADMS, and R-LINE for tracer
(SF6) dispersion and found that the more recently developed ADMS and R-LINE exhibited lower error
and better validation compared with CALINE and AERMOD. The models were each compared with
results from a tracer study in Idaho Falls, ID (for open field and constructed barrier conditions) under
different convective mixing conditions and near Highway 99 in Sacramento, CA and showed that ADMS,
3-4). ADMS and R-LINE were further compared for near-neutral, weakly stable, convective, and
moderately-to-strongly stable convective mixing conditions. At low concentrations (<1 pbb), both models
exhibited a tendency for positive bias except for the moderately-to-strongly stable conditions, where both
models exhibited some negative bias with more scatter. Chen et al. (2009) tested the performance of three
dispersion models, CALINE4, CAL3QHC and AERMOD, at Sacramento, CA and London, UK.
regarding their application in modeling near road PM- 5 concentrations. All three models produced R?

values ranges from 0.85 to 0.90 comparing with measurement data (without adding background
concentrations) in Sacramento, CA. However, the models perform less well at London, U.K. with R?
value at around 0.03 without background concentrations due to the influence of street canyons on receptor

performance.

Dispersion models are typically applied over smaller domains (near-source to urban) than CTMs
(urban to global). For example, AERMOD is designed for simulating “near source” dispersion from point
and area sources, and is most useful for assessing source impacts within 20 km of the source (Silverman
1.
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2005). R-LINE is used for line source modeling, and was originally evaluated by Snvder et al. (2013) for

distances of 200 m, though applications have applied it to urban scale (Batterman et al., 2014). While

AERMOD is designed to simulate point and area/volume sources, it has been used to estimate the impacts

of road networks by approximating road segments as area or volume sources (Isakov et al., 2014; Chen et

al., 2009). Rowangould (2015) proposed a new dispersion modeling method for urban environments by

breaking the city into coarse and fine grid cells (depending on the roadway density) and modeling
dispersion from roadway sources in each roster in parallel. No validation was presented in the
Rowangould (20135) paper.

Table 3-4 Comparison of dispersion models with data from a tracer study in
Idaho Falis, ID and a near road study in Sacramento, CA and an UFP
study in Somerville, MA and Chinatown in Boston, MA.

Idaho Falls, ID Sacramento, CA Somerville, MA Boston, MA
Model NMSE R NMSE R NMSE R? NMSE R?
CALINE3 NR NR 2.26 0.29 NR NR NR NR
CALINE4 1.94 0.76 0.86 0.47 0.06 0.54 0.02 0.78
AERMOD-V 1.26 0.84 0.28 0.77 0.11 0.57 0.02 0.81
AERMOD-A 1.25 0.82 0.31 0.72 NR NR NR NR
ADMS 1.14 0.88 0.20 0.78 NR NR NR NR
R-LINE 0.96 0.85 0.34 0.75 0.13 0.58 0.02 0.81

NMSE = normalized mean squared error; NR = not reported, R = correlation (not specified if Pearson or Spearman);
R? = coefficient of determination.

Sources: Data reproduced with permission of Heist et al. (2013); data reprinted with permission from Patton, AP, Milando, C,
Durant, JL, Kumar, P. Assessing the suitability of multiple dispersion and land use regression models for urban traffic-related
ultrafine particles. Environ Sci Technol. 2017;51:384-392. Copyright (2017) American Chemical Society. (Patton et al., 2017).

Several studies have used dispersion models at urban or neighborhood scales to estimate exposure
concentrations. For example, Isakov et al. (2014} applied both AERMOD and R-LINE in Detroit, MI to
estimate exposure concentrations to PM» s, EC, OC and pollutant gases at homes and schools of children
with asthma participating in the Near Road Exposure of Urban Air Pollutants Study (NEXUS). CMAQ

and kriging of observations were used to define regional air pollutant levels. Comparison between model

results and measurement show reasonable performance with Pearson R range from 0.78 to 0.94 (daily
average PMaz s concentrations) at different monitor sites. Simulated concentrations of PM are often used in
conjunction with other estimates of regional PM because dispersion models are the more limited in spatial

extent and so not designed for PM transport over large distances. For example, in an Atlanta application
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(Dionisio et al., 2013; Samnat et al., 2013b), a variety of approaches were used to estimate exposure

concentrations. One approach used AERMOD to model impacts of traffic emissions and added the
resulting concentrations to background concentrations (developed from observations) to construct a

high-resolution PM field for use in an epidemiologic study. Samat ¢t al. (2013b) used the fine-scale

resolution to help identify potential health disparities linked to socioeconomic status that were not
apparent when using a single fixed-site monitor. Maroko (2012} used AERMOD to simulate PM 5
impacts from point sources in the New York City area to assess environmental justice issues. Dispersion

models can also be used to simulate components of PM, assuming that they do not undergo a chemical
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reaction in the atmosphere. For example, Colledge et al. (2015) used AERMOD to estimate particulate

—
<

manganese exposure in two Ohio towns.

11 A recent development in dispersion modeling is the inclusion of UFP when modeling PM
12 dispersion in the vicinity of a road. Patton et al. (2017) evaluated CALINE4, R-LINE, and AERMOD for

13 UFP transport near roads in the greater Boston, MA area (Somerville, MA and Chinatown, within

14  Boston). They found similar performance among all three models (Table 3-4). Stanier et al. (2014)

15 recognized that it is challenging to model UFP emitted from mobile sources, because the UFP size

16  distribution rapidly evolves upon emission from vehicle tailpipes. They fit emissions factors based on

17 existing data for cruising and acceleration of heavy-duty and light-duty vehicles, estimating across a size
18  distribution down to 7 nm and correcting for coagulation and deposition. The emissions factors were

19  incorporated into a dispersion term in the model. Modeled particle NC was compared with measured

20 concentration at two sites within the Los Angeles, CA metropolitan area and showed underestimation of
21 the model (below a factor of 1:2) at one location and modeled data within a factor of two at the other site.

22 Stanier et al. (2014) propose that the model is suitable for estimating spatially resolved UFP exposure

23 concentrations on a daily basis.

24 Dispersion modeling continues to be used in exposure assessment studies, ofien in conjunction
25 with CTMs to provide fine-scale spatial resolution. Recent improvements have been made in modeling
26  dispersion of traffic-related air pollution and applying dispersion models at urban scales. However,

27 dispersion models are still limited when applied in dense urban environments since dispersion models are

28  not designed to deal with complex built topography (Kakosimos et al., 2010), and they are limited in their

29  ability to represent UFP transport because they are not designed to capture size-specific UFP dynamics
30 (Stanier et al.. 2014).

3.3.24.3 Hybrid Approaches

31 Although spatiotemporal and LUR models have been applied to estimate long-term (e.g., monthly
32 and annual) spatially-resolved ambient PM exposure concentrations, these techniques are typically not as
33 successful for short-term (e.g., hourly and daily) applications as they do not include the impacts of

34  changing source emissions and meteorology. PM data from ambient monitors provide accurate

35  information on temporal trends at monitoring sites but little information on spatial patterns.
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Emissions-based models provide spatial information consistent with emissions, chemistry, and
meteorology but subject to limitations in the accuracy of these inputs as well as in the ability of models to
simulate air pollution physical and chemical processes. “Hybrid” approaches that combine observational
data with emissions-based model results are being developed and used to provide better estimates of
single component and mixtures along with estimates of the associated uncertainties. These approaches

range from rescaling model results to correction for known biases to combining observational and

~3 N WU B W N e

simulation data and optimizing spatiotemporal exposure concentration estimates.

Fusion of Model Outputs for Exposure Concentration Estimation

8 As noted above, CTMs by themselves typically have spatial resolution of 4 km or greater duc to

9  computational limitations, but they provide regional variations in PM (and PM component levels) and
10 capture the formation of secondary PM, while dispersion models provide near-source impacts with a finer
11 resolution. Given these complementary characteristics, it is natural to couple them (though care must be
12 taken to not double count emissions) (Isakov et al., 2009).

13 Several recent studies have merged CMAQ with dispersion models. For example, Beevers et al,
14 (2013) combined CMAQ results with the ADMS (a dispersion model) in London, England. They found
15 that the combination could capture the spatial and temporal variations in air quality, with a mean bias of
16 0.6 ug/m’ when comparing the model to monitors at five sites. Similarly, Zhai et al. (2016) combined

17 R-LINE results with CMAQ-data fusion fields to estimate PM: s exposure concentration fields for

18 Atlanta, GA for a birth cohort study, with Pearson R? = 0.72 between the model and monitoring data with
19  LOOCV nomalized RMSE = 0.50 and normalized mean bias of 12%. A combined AERMOD-CMAQ
20 application to New Haven, CT, was conducted (Lobdell et al., 201 1; Isakov et al., 2009) to develop local

21 scale (census block level) PM exposure concentrations in a base year (2001) and future years (2010, 2020
22 and 2030 to assess pollutant control programs). They noted the uncertainties due to model inputs, with

23 coefficients of variation (standard deviation of concentration/mean concentration) ranging from 10-70%

24 within different census tracts, but no estimates of model uncertainty with respect to PM, s were provided.

25 They linked their results to the HAPEM (Ozkavnak et al.. 2008) and SHEDS (Isakov et al., 2009)

26 exposure models, as described further in Section 3.3 .4.

27 Another method of addressing the low spatial resolution of a CTM is to combine the model

28  results with dispersion model results and LUR modeling output for exposure concentration. Wang et al.
29 (2016) combined CTM with LUR using a hierarchical spatiotemporal modeling technique in which the

30 2-week average LUR-derived PMas s concentration is modeled as a function of spatiotemporal trends and
31  spatiotemporal residual terms, where the trend terms can be decomposed into an average and a

32 spatially-varying trend (Keller et al.. 2015). Wang et al. (2016) incorporated the CTM predictions into the
33 spatially-varying trend term. The advantage of combining these two models is that the CTM is a

34 mechanistic model employing principles of transport, dispersion, and atmospheric chemistry with finer
35  temporal resolution (daily for this study), while the LUR offers fine-scale spatial resolution. The LUR
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was fit to fixed-site PM» s monitoring data in AQS and from the MESA Air study and incorporated a
variable for long-term average concentration derived from the CAL3QHCR near-road line source
dispersion model. Wang et al. {2016) found that addition of the CTM to the spatiotemporal model of

Keller et al. (2015) only produced a marginal improvement in the prediction ability of the model for

capturing PMs s exposure concentrations. Di et al. (2016b) combined GEOS-Chem simulations, based on

a 28 km x 25 km gnid, with land use and meteorological variables to improve resolution to 1 km x 1 km
across the northeastern U.S. Di et al. (2016b) compared the model results with monitoring data when the

GEOS-Chem model was used alone and when it was combined with land use and meteorological
variables. Out-of-sample R? for PM: s improved from 0.47 for GEOS-Chem alone to 0.85 for the hybrid
model. Out-of-sample R? ranged from 0.13—0.33 for PM; s components (EC, OC, NO; ", SO.*, NH.',
dust, sea salt) for GEOS-Chem alone, and R? improved to 0.41-0.83 across the PM, s components for the
hybrid model.
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Fusion of Chemical Transport Model Predictions with Surface
Observation Data

13 To take greater advantage of the strengths of observational data and model simulations, various
14  data fusion approaches have been developed and applied. Such model-data fusion approaches used in
15 estimating exposure concentration fields for health studies have frequently used CMAQ.

16 Downscaling approaches have been used frequently in recent years to correct biases in CTM
17 output. Berrocal et al. (2009) proposed a downscaling approach combining monitoring and CMAQ

18  modeling data to improve the accuracy of spatially resolved O; model data. Specifically, a Bayesian

19  model was developed to regress CMAQ model estimates of O concentration on monitoring data, and

20 then the regression model was used to predict concentrations using the CMAQ model results as an input
21 field. Although the downscaling method was originally developed for to model O; concentration, this

22 technique has since been applied for modeling PM: s concentration surfaces and found to have low NMB

23 (0.95%) with mean correlation between model output and monitoring data of 0.97 (Bravo et al., 2017).

24 Berrocal et al. (2010) extended the approach to include two pollutants (ozone and PM> 5) in a single

25  modeling framework. Predictive mean absolute error (PMAE) for PM- s concentration in the bivariate
26 model was 2.3 pg/m’, compared with observations at 65 monitoring sites. PMAE for PM; s was 2.4 pg/m’

27  for the comparison of the single-pollutant model with the monitoring sites. Berrocal ¢t al. (2012} also

28  added smoothing processes that incorporate spatial autocorrelation and correction for spatial

29  misalignment between monitoring and modeled data. Bentaveb et al. (2014) applied a similar data

30 assimilation method in which local measurements and elevation data were combined with CTM output in
31  ageostatistical forecasting model. This algorithm was applied for PMs s, PMio, NO», SO», CsHs, and Os.
32 For the years 1989-2008, correlation between assimilated PMa s concentration and local observations at
33 2 km resolution ranged from Pearson R = 0.12 to 0.85, with correlations decreasing with year. Bentaveb
34 etal (2014) explained the low correlations by a small number of PM s monitoring stations producing

35 anomalous data and low correlations between emissions and concentration data.
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Bias correction methods are variations on downscaling that have been developed to address
spatiotemporal bias in the CMAQ model. For example, Crooks and Oezkavnak (2014) developed a

statistical method of spatiotemporal bias correction of PM» s mass and its major components for CMAQ
fields. The correction uses speciated data from ambient monitors. Mass conservation for PM s
observations constrains the sum of the PM. 5 components” concentrations in locations without speciation

monitors. The Crooks and Oczkavnak (2014) method is similar to downscaling methods in that it is a

calibration method, but it corrects to the grid-scale rather than receptor points. The method was developed
for use in an epidemiologic study investigating the association between PM» s component ambient
concentrations and birth outcomes throughout the state of New Jersey based on 1-month averages, so the
focus was on addressing seasonal bias trends rather than daily biases. The bias-corrected CMAQ results
were more accurate than the original CMAQ output (calculated as mean bias and RMSE using monitored
concentrations as a reference), and a cross-validation study found that predictions improved when
enforcing mass conservation. Comparison between the bias-corrected CMAQ and other downscaling or

bias correction methods was not provided. Hogrefe et al. (2009) used a combined model-observation

approach to estimate historic gridded fields of PM, s mass and component concentrations, with
corrections varying by component, season, and location. PM» s mass concentration had a median bias of
—0.3 pg/m® and median RMSE of 7.5 ug/m? compared with monitor values. Hogrefe et al. (2009)

reported high relative biases and larger uncertainties for nitrate and organic carbon, compared with sulfate
and ammonium. This was especially pronounced at remote IMPROVE sites, compared with urban CSN
sites that have more monitors. Although more development is needed, these methods present additional

options for applving CTMs for modeling PM- s species.

A hierarchical Bayesian model (HBM) to predict daily PMs s exposure concentrations for use in
the Environmental Public Health Tracking Network has been developed through a CDC-EPA
collaboration. This model integrates U.S. EPA monitor data with CMAQ simulation results to generate
daily PM> s concentration and error fields for a 36 kim grid across the conterminous U.S. and fora 12 km
grid across an eastern portion of the U.S. (Vaidvanathan et al., 2013; McMillan et al., 2010). In the
application of HBM over a section of the eastern U.S., McMillan et al. (2010) found that the mean
squared error using the HBM ficld was similar to a field developed using kriging, though the HBM

outperformed kriging by 10—15% for bias. They found that 59% of the validation data was captured in the
kriging prediction intervals as compared to 80—-90% when using HBM. For the U .S.-wide application at
36 km resolution, the HBM method had Pearson R’s ranging from 0.91 to 0.94, depending upon the
method used to impute the CMAQ data (Vaidvanathan et al., 2013), while the 12 km application over the
castern portion had Pearson R’s of 0.84 to 0.86.

Data fusion methods sometimes include fusing CTM modeling results with observations for

exposure predictions. Chen et al. (2014) evaluated an observation-CMAQ fusion for population air

pollution exposure assessment using an inverse distance weighting method on observation-CMAQ
differences, concluding that data fusion improved the estimation of population-weighted average
exposure concentrations. On average, PM, s mass was estimated to be negatively biased by about 30%,
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and individual components had a range of positive and negative biases from —150 to 100%. Nitrate and
OC tended to see the largest biases and errors. After data fusion, the bias for PM, s was near zero.
Performance for individual components was similarly improved. Friberg et al. (2016) also fused CMAQ

results to observations in a study focused on PM s exposures in Georgia. In this study, daily spatial
exposure concentration fields for PM: s mass, PM: s components, and various gases were constructed
from two blended fields. For one ficld, the temporal variance is driven by observations, while the spatial
structure is driven by the annual mean CMAQ fields. The second field is constructed by scaling daily
CMAQ simulated fields using mean observations to reduce bias. The final step blends the two fields
based on using the temporal variance. The method intentionally does not force the fields to the
observations at each monitor as they can be impacted by local emissions. The original CMAQ application
for PM, s was biased low about 12% with an RMSE of about 50% and an R? of 0.3. Typically,
performance for individual PM» s components was not as good. After applying the data fusion, the bias
was almost totally removed, the RMSEs were about 20% for PM» 5 and most PM components (though
NO; ™ and EC were substantially higher), and the R? was about 0.92 (similar to individual components,
though R? for EC was about 0.8). The method was tested using a 10—fold cross validation. In this case,
the PM; 5 R? was 0.75 and the RMSE was 30%.

Data fusion techniques have been tested in several other locations. Friberg et al. (2017} compared
the fused CMAQ with original CMAQ model runs for five cities (Atlanta, GA, Birmingham, AL, Dallas,
TX, Pittsburgh, PA, and St. Louis, MO) and found that the RMSE for PM; 5 ranged from 2.21 to

they also used spatial grouping of the 10% of monitors being removed to account for monitor clustering.
In this case, the simulated PM, 5 from the base CMAQ application had an RMSE of 6.3 pg/m? and an R?
of 0.3, while after data fusion the RMSE decreased to 1.8 pg/m® and R? improved to 0.95. They also
conducted 10-fold cross validation, both with and without (i.e., randomly withheld) spatial grouping.
Finally, they compared the CMAQ-based data fusion fields with fields developed using a Bayesian-based
method incorporating acrosol optical depth (AOD) from satellite data and found that the CMAQ-based
approach performed slightly better (e.g., R? of 0.97 vs. 0.90 for AOD) using all of the data. The

application of the same method in multiple locations shows that performance varies by domain.

Hybrid approaches can involve merging CTMs with dispersion and/or LUR models, merging
CTMs with observational data, or some combination therem. Hybnd approaches improved CTM
validation for PM- s mass concentration when CTM was merged with either models or observational data.
However, validation was not as good for PM, s mass components, possibly due to the sparseness of
validation data and limited data for PM» s component emissions.
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3.3.3 Satellite-based Methods for Exposure Concentration Estimation

At present, spatiotemporal methods for predicting exposure concentration based on satellite
observations have been applied primarily to PMs 5 using AOD information supplied by various
satellite-based instruments [sec Section 2.4.4 and (Lin et al.. 2015; Hu et al., 2014¢; van Donkelaar et al.
2014; Lee et al., 2012a; Mao et al., 2012; Lia et al., 2009)]. Satellite data (Section 2.4.5), obtained twice

per day over the U.S ., has been used in recent exposure assessment studies to estimate exposure
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concentrations in rural regions where monitoring is not conducted, to improve estimates of spatial
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concentration across Canada, which includes urban and rural areas. The authors adjusted the satellite data
10 by annual average PM: s (or estimated PM: 5 based on TSP measurements prior to PM; s measurements,
11 which began in 1984) and then used the study cohorts” residential locations to estimate their exposures
12 based on their residential histories and exposure concentrations corresponding to those locations. Hystad

14 between residences over time and space through this method resulted in 50% of individuals being

15 classified in the wrong PM; s exposure quintile. Prudhomme et al. (2013} computed the correlation of

16 PMa s exposure concentration predicted at a residential location with the nearest fixed-site monitor and
17 found that the correlation decreased from £ = 0.74 (not stated if Pearson or Spearman) when the home
18  was within 1 km of the monitor and decreased to 0.60 for distances of 30—40 km between the home and
19 the monitor. This result implies that the PM: 5 exposure concentration predicted using AOD is a better
20 predictor of exposure concentration within a given grid cell compared with exposure concentrations

21 further away.

22 Errors in the relationship between PM; s and AOD are related to variation in retrieval due to
23 resolution of the satellite image and variation in meteorology, topography, and reflectance (Section 2.4 .4).

24 Hu (2009) calculated the correlation between surface PMz s and AOD at 877 monitoring sites across the
25 U.S. and found that average correlation east of the 100°W longitude line was Pearson R = 0.67, compared
26 with Pearson R = 0.22 west of the 100°W longitude line. Negative correlations between PM» s and AOD
27 were calculated at several sites west of the 100°W longitude line but at only three locations east of the

28  100°W longitude line. van Donkelaar et al. (2010} also noted this discrepancy between satellite data

29  quality in the eastern and western U.S. They used population-weighting to determine national and global
30 estimates of exposure concentration. Population density happens to be lower in mountainous parts of the

31  western U.S., where the highest biases in AOD were noted.

32 Improving the relationship between AOD and surface PM observations to estimate exposure

33 concentrations has led to the use of more advanced statistical methods for fusion of satellite data with

34  CTM output and surface data in recent years. Satellite-based exposure concentration models now use

35 AOD and other information (¢.g., direct pollutant observations, meteorology, and land-use). For example,

36  van Donkelaar et al. (2012} applied a smoothed bias correction to satellite-derived PMs s exposure
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concentrations by first applying a 90-day moving average to the AOD prior to fitting PM> 5 concentration
estimates, and then smoothing the PM; s exposure concentration field using IDW. The bias correction
alone reduced the positive bias in the estimate to +29% with an estimated uncertainty of 54%. This is
compared to the uncorrected PM, s exposure concentration estimate, which had a bias of 97% with an
estimated uncertainty of 67%. Incorporation of smoothing reduced the bias further to +14% with an
uncertainty of 42%. An LUR approach to derive spatiotemporal pollutant fields accounts for the
complexities in the AOD-PM relationships, including spatially and temporally varying conditions (Lec et
al., 2016: Huetal., 2014e; Ma et al., 2014; Chudnovsky et al., 2012; Hystad et al., 2011). Similar to LUR
models, the approach is to develop a regression relationship between the observed PM» s and AOD that

includes the AOD field available from satellite observations and, potentially, other variables (¢.g., those

used in traditional LUR modeling). The regression coefficients can vary in time and space.

Not accounting for spatial and temporal variability in the relationship between PM» s and AOD

may lead to poor model performance (Hu et al.. 2014d). Liu et al. (2009) recommended use of a two-stage

general additive model including land use variables, with a stage one temporal model and stage two
spatial model, so that the temporal and spatial variability are both addressed by the model, with an
out-of-sample R? of 0.78, which was close to the model fit R? of 0.79 (stage one model-fit R =0.77,
stage two model-fit R? = 0.73). Given the large spatial and temporal coverage of satellites, a large number
of observations are typically available to develop the model. Additional spatial variation, particularly at
scales finer than the resolution of the satellite observations, is provided by using fine scale land use
variables. Lee et al. (2011) also recognized that the relationship between PM, s and AOD is governed by

time varying parameters affecting the vertical profile, the temporal variability of surface PM; s over the
course of aday. They developed a day-specific mixed effects model with random intercepts and slopes to
quantify the relationship between surface PM; s measured by surface monitors and AOD over New
England in 2003. They assumed that temporal variability in properties that most strongly affect this
relationship are much larger than their spatial variability over the domain of interest. In their model, the
AOD fixed effect represents the average effect of AOD on PM s for all study dayvs and the AOD random
effects explain the daily variability in the PM: s-AOD relationship. Since some ground-based PM: s
monitors are located near strong sources, but Moderate Resolution Imaging Spectroradiometer (MODIS)
samples represent an average over a 10 km x 10 km grid, an additional site specific random effects term
is added to correct possible bias. Site specific out-of-sample R? varied from 0.87 to 1.0 with precision
ranging from 8.8 to 38.6% for measured mean PM, 5 at 26 urban sites (range: 9 to 19.5 pg/m?).

Satellite observations of AOD have also been incorporated into hybrid modeling approaches. For
example, Beckerman et al. (2013b} combined LUR, based on AOD observations, GEOS-Chem model
output, land use data, and surface measurements of PM, 5 concentration, with BME to predict PM; 5

concentrations. BME was added to the model to improve spatiotemporal variability at scales smaller than
the satellite’s spatial resolution. Beckerman et al. (2013b) did not observe a substantial added benefit to

including satellite data in an LUR model that also drew from land use data, surface measurements of
PM; s concentrations, and GEOS-Chem simulations. In this study, PM; s concentrations were predicted
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throughout the contiguous U.S. using an LUR-BME with and without satellite data. The LUR with
inclusion of satellite data produced an out-of-sample R? of 0.27 compared with R? of 0.05 without
inclusion of satellite data. When BME was incorporated in the LUR to interpolate between spatiotemporal
residuals from the training model, out-of-sample R? improved to 0.79. R* was the same for the
simulations both including and excluding satellite data. Using a similar hybrid satellite-modeling
approach, Lec et al. (2012a) found that during the period 2000—2008 in the New England region of the

U.S., a densely populated study domain with high traffic areas, PM- s exposure concentrations were

predicted with an out-of-sample R? value of 0.83 and a mean relative error of 3.5%. Chang et al. (2014)

describe a statistical downscaling approach that incorporates LUR models utilizing AOD and statistical
techniques for combining air quality data sets that have different spatial resolutions. In cross-validation
experiments for a 3-year time period over the southeastern U.S., the model performed well (out-of-sample
R?=0.78 and RMSE = 3.61 pg/m’ between observed and predicted daily PM, s concentrations), with a
10% decrease in RMSE attributed to the use of AOD as a predictor. Validation of hybrid models has been

inconsistent across studies.

Recent studies have tested the effect of satellite image resolution on PM» s mass concentration
predictions. Hu et al. (2014c¢}, using a two-stage model, compared the more traditional MODIS AOD at

10 km resolution with a Multiangle Implementation of Atmospheric Correction (MATAC) algorithm at
1 km in the Southeastern U.S. and found that, when using 10-fold cross-validation, the out-of-sample R?
was slightly lower for the 1 km MATAC observations (0.67 vs. 0.69), though the R? for model fitting was

Alexeeff et al, (2015) also used the 1 km MAIAC fields to estimate exposure concentration fields,

comparing their results to fields developed using kriging. They found that using the MAIAC-based ficlds
had a higher cross-validation than kriging, and that the low out-of-sample R? yielded biases in areas with
lower covariance in the concentration field. Lv et al. (2016} used MODIS AOD and a statistical method
similar to Chang et al. (2014) in an application in China. It is discussed here in terms of how the

evaluation was performed. Using all data (no withholding), the R? was 0.78 and the normalized mean
error was 0.27. When they used a random leave 10% out procedure, the method led to an R?, normalized
mean error (NME) and RMSE of 0.68, 0.26 and 21.40 ug/m’, respectively (like PM: s concentrations,
RMSE is much higher in China than in the U.S.). Using a process where monitors were removed after
being grouped by city led to somewhat worse performance: 0.61, 0.28 and 23.53 ug/m’, respectively. This
suggests that method and application evaluations should use cross-validation methods that consider

spatial groupings of monitors as a more stringent evaluation approach.

Recent efforts have fused satellite data with LUR model results and surface observations to
maximize available data for estimation of exposure concentrations. Kloog et al. {2011) built a three-stage

regression model using surface measurements as the response variable and including MODIS-derived
AQD, land use variables, and a daily calibration PM; 5 concentration from surface measurements to
estimate PM: s exposure concentration on a 1 km x 1 km grid across New England, and Kloog et al.
{(2012a) extended the model across the Mid-Atlantic states. When AOD was available, the
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cross-validation out-of-sample R? was 0.83 for New England and 0.87 for the Mid-Atlantic states; when
AOD was unavailable, cross-validation out-of-sample R? was still 0.81 for New England and 0.85 for the
Mid-Atlantic states. When running the model for the two regions combined, Kloog et al. (2012b} found
cross-validation out-of-sample R? was 0.81 for the total model of PM, s and 0.81 for the LUR stage of the
model. Kloog et al. (2014) built upon this method by first calibrating the AOD on daily measurements of

PM: s and adjusting for land use and meteorological variables for the Northeastern U.S. (New Jersey to
Maine) for 2003-2011. Where AOD data were available, this model was used to predict PM- s exposure
concentration. The second model used the AOD—PM, s calibration to predict AOD, which was then input
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14 Similar to BME, machine learning approaches can be used to merge satellite observations with

15 land use and other data for prediction of PM: s mass concentration. For example, Reid et al. (2015) used a

16  machine learning approach to estimate spatiotemporal PM, 5 exposure concentration ficlds over the

17 central region of California during a period of wildfires in the region by building spatiotemporal models
18 using 11 model types from a set of 29 independent variables and selecting the optimal one for each model
19 type. Input data included PM; 5 and meteorological predictions from a CTM (WRF-Chem), land use data,
20 and satellite AOD observations [three sets: the Geostationary Operational Environmental Satellite West
21 Acrosol/Smoke Product (GASP) with a resolution of 4 km, the MODIS AOD product with a resolution of
22 10 km, and a local AOD product developed from MODIS data at a 500 m resolution, PM; s and

23 meteorological predictions from WRF-Chem, land use data, and distance to the nearest fire cluster]. The
24 data were put in to each of the methods to develop a best model. Ten-fold cross-validation out-of-sample
25  R?ranged from 0.387 to 0.803, and RMSE ranged from 1.49 pug/m? to 2.03 ug/m’. It was found that

26  similar model performance (within 1.5% of the RMSE) was achieved using only 13 variables, compared
27 with a model of all 29 variables, with highest out-of-sample R? and lowest RMSE. They found that the

28  variable most correlated with the PM: s observations was the GASP followed by the distance to nearest
29  active fire cluster, then the local AOD product and WRF-Chem PM; s contributed equally. Di et al.

30 (2016a) used a similar approach for a model of PM. 5 exposure concentration across the contiguous U.S.
31  GEOS-Chem simulation results were merged with satellite data for AOD, surface reflectance, and aerosol
32 absorbance index, as well as with surface data from monitors reporting to AQS and data for meteorology
33 and land use. For 2000-2012, out-of-sample R? = 0.84 with RMSE of 2.94 ug/m®. The relationship

34 between predicted and measured PM» s concentrations was approximately linear until measured PMz s

35  concentrations were above approximately 60 pg/m?. At that point, the predictions were insensitive to

36 measured PMs, but limited PM, s concentration data were available above concentrations of 60 pg/m’.
37  These studies illustrate that the most important variables change, depending on the scenario modeled and

38  the specific variables included.
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Several other studies have devised novel methods to fuse observational data and results from

models for estimation of exposure concentrations. Pirani et al. (2014) performed Bayesian spatiotemporal

modeling for the assessment of short-term exposure to PMy, in London, U K. using mass concentration
measurements and output from the high spatial resolution air dispersion modeling system. They found
exposure concentration estimates in urban areas are improved by including city-scale particle component
and long-range transport component with covariates to account for residual spatiotemporal variation.
Crooks and Isakov (2013) developed a novel method using wavelets to blend CMAQ, AERMOD, and

observation fields to capture intra-urban transport of pollutants across a spectrum of spatial scales. They

used it to estimate block group and zip code centroid exposure concentrations in Atlanta, GA and found

that it captured the concentrations down to scales on the order of 100 m.

Several studies using AOD observations to predict PM: s have been published in recent years.
Progress in this approach includes incorporation of AOD with LUR, BME, and geostatistical modeling
approaches that also may include surface measurements. Most applications of these hybrid models were
designed to make comparisons across space for long-term exposure studies, where the temporal averages
were more stable than for short-term exposure studies. Still, validation results across these studies were
inconsistent, so attention must be given to the strengths and limitations of individual exposure models and
their appropriateness for a given scenario (e.g., urban vs. rural, where monitoring for use in model
training and validation may be sparse in the latter case) rather than assuming that the predicted PM. 5
exposure concentration is accurate if it includes satellite data.

3.3.4 Microenvironmental Exposure Modeling

Indoor air exposures to total PM may be measured directly or estimated based on infiltration rates
that typically use some level of mass balance model, potentially with chemistry, deposition, and other
processes that can affect individual exposure. Inputs to indoor air mass balance models include ambient
PM concentrations (observed or estimated), air exchange rates, indoor source emissions, and other factors
that can affect the dynamics of pollutants. Such indoor air models are included in integrated exposure
models (such as U.S. EPA’s Stochastic Human Exposure and Dose Simulation [SHEDS] and Air
Pollutants Exposure [APEX] models) or individual models (such as the Exposure Model for Individuals

[EMI]), that also incorporate factors such as human activity patterns (Baxter et al,, 2013). In Baxter ¢t al.

indoor-outdoor air exchange rates with no indoor sources were approximately half of the concentrations

from ambient monitor measurements.

Personal exposure occurs in multiple microenvironments that people encounter through their
daily activities (¢.g., indoors, outdoors, in vehicles). Methods have been developed to simulate potential
total exposures through such environments by tracking “representatives” of population groups as they

move between indoor and outdoor microenvironments, using estimated pollutant concentrations in each
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location to develop a time-weighted exposure profile for that population group. How individuals “move™
though the different microenvironments is taken from studies of personal activity data [e.g., the
Consolidated Human Activity Database, or CHAD (Isaacs, 2014)]. This database has information on
sequential patterns of individual activities. This allows simulating not only “average” individual

exposures, but also the distribution of exposures for different individuals or population groups over time.

Residential air exchange rate (AER) is a critical parameter for exposure models, such as APEX,
SHEDS, and EMI (Breen et al., 2013; U.S. EPA. 2011, 2009a; Burke et al.. 2001), with people spending

available for exposure models, mechanistic, and empirical (i.¢., regression-based) AER models can be
used for exposure assessments. Empirical AER models do not consider the driving forces from the wind
and indoor-outdoor temperature differences. Instead, a scaling constant can be used based on factors such
as building age and floor area (Chan et al ., 2005). Single-zone mechanistic models, such as the Lawrence

Berkeley Laboratory (LBL) model, represent a building as a single well-mixed volume(Breen et al., 2010;
Sherman and McWilliams, 2007; Sherman and Grimsrud, 1980). Recently, the LBL air infiltration model

was linked with a leakage arca model using population-level census and residential survey data (Sherman

and McWilliams, 2007) and individual-level questionnaire data (Breen et al., 2010). Variations on the

LBL model were compared with daily AER measurements in North Carolina (Breen et al., 2010) to find

mean absolute differences of 40—43%.

The Hazardous Air Pollutant Exposure Model (HAPEM, now Version 6) is a screening level
approach for modeling long-term inhalation exposures to ambient air pollutants, including PM. It can take
modeled ambient pollutant concentrations as inputs or can use a parameterization of National Air Toxics
Assessment (NATA)-generated PM estimates based on the near-road and far-from-road census tract

populations (Rosenbaum and Huang, 2007). To develop exposure concentration estimates in

microenvironments (¢.g., commuting), microenvironmental factors are used to modify outdoor
concentrations (¢.g., provided by developing ambient exposure concentration ficlds). HAPEM has been
used for nationwide assessments of exposure to sources of specific PM components and other pollutants
(Ozkaynak et al., 2008) and, as noted above, coupled with a CMAQ/AERMOD combination (Isakov et

al., 2009).

The SHEDS model and APEX model (which is now part of the Total Risk Integrated

Methodology, or TRIM-Expo) both simulate individual movements though multiple microenvironments.

APEX uses either a mass balance approach or a ratio to estimate in-vehicle or indoor concentrations (Che
differences in predictions for population exposure concentrations (12.2 vs. 12.9 pug/m’, respectively).
SHEDS includes an activity-dependent ventilation rate to estimate dose. SHEDS-PM (the PM version of
SHEDS) has a linear relationship between ambient concentrations and in-vehicle concentrations as well
as in offices, restaurants/bars, schools, and stores. When analyzing contributions to exposure based on
application of SHEDS-PM with daily PM, s from CMAQ, Jiao et al. (2012) found that spatial variability
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of ambient concentrations within urban areas was not substantial, but inter-individual variability in
estimated exposures was substantial. Daily estimates of the ratio of ambient exposure to ambient
concentration differed by a factor of 4—5 across the simulated individuals. SHEDS uses time-activity data
from the CHAD database. Jiao ¢t al. (2012} noted that there were not sufficient data in the CHAD
database to quantify how time-activity patterns varied as a function of sex, region, or season when limited

to the three areas studied, although statistically significant differences in time spent indoors or time spent
outdoors by sex, region, and season were seen for CHAD data aggregated across large geographic

regions. Liu and Frev (2011) proposed a method to estimate in-vehicle PM; s exposure concentrations that

combines using ambient concentrations and a local incremental concentration that accounts for near road
enhancements in licu of assuming a linear relationship between PM, s concentration measured at
fixed-site monitors and exposure concentrations estimated on the road using the CALINE4 dispersion
model. Liy and Frev (2011) found that in-vehicle exposures contribute 10-20% of average daily PMa: 5
exposures. Georgopoulos et al. (2009) linked SHEDS with an environmental risk model (MENTOR) to
estimate exposures (and the related risks) for PM, s in Philadelphia, using a CTM to provide the PM; s

field. For those individuals with the highest 5% of PM: s exposures, the major microenvironment was

indoors, and environmental tobacco smoke was the dominant source. Qzkavnak et al. (2009) evaluated

the uncertainty inherent in the coupled model formulation and compared it with a “crude” estimation of
uncertainty when the models are run separately and with CMAQ outputs being used for SHEDS inputs.
Uncertainty for the crude method was 1.2—4 .4 times higher than for the coupled formulation.

The EMI model simulates individual exposure to PM: 5 as the aggregate of exposures in multiple
microenvironments (Breen et al., 2015). The EMI uses a five-tier system to model individual exposures.

AER is predicted in Tier 1 based on surveys and variations on the LBL model for each microenvironment.
Infiltration factors are predicted in Tier 2, and those values are used to predict outdoor concentrations
infiltrated indoors measured immediately outside each microenvironment and measured at fixed-site
monitors in Tier 3. A weighted average of the infiltration factor over time spent in different
microenvironments is produced for each individual in Tier 4, and then personal exposures to pollution
from directly outside the microenvironment and from the fixed-site concentration measurement are
computed in Tier 5 for each individual. Personal monitoring and time-activity surveys are necessary
inputs for the EMI. The Tier 2—3 metrics were observed to have approximately 15-25% error (Breen et
al.. 2018: Breen et al., 2015).

The trade-off between computational accuracy and efficiency in exposure and risk models has
received limited discussion in the exposure model literature. Chang et al. (2012) described a simulation

process incorporating SHEDS exposure simulation into two risk models: an “exposure simulator” in
which an exposure time series was simulated stochastically and then incorporated into an ensemble
average risk, and a two-stage “Bayesian” approach in which the computed time series was used as a prior

estimated using the exposure simulator model, the Bayesian model, and fixed-site PM; s concentration as
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an exposure surrogate. Little difference was observed between the exposure simulator and Bayesian

models, but the exposure simulator was less computationally intensive.

3.3.5 Exposure Assignment Methods in Epidemiologic Studies

Epidemiologic studies use a variety of methods to assign exposures or exposure concentrations to
study participants. Study design, data availability, and research objectives are all important factors for
epidemiologists when selecting an exposure or exposure concentration estimation method. Common
methods for estimating exposure concentrations from monitoring data include using fixed-site ambient
monitoring, averaging concentrations from multiple monitors, and selecting the closest monitor to
represent population exposure concentration. Investigators may also use statistical adjustment methods,
such as trimming extreme values, to prepare the exposure concentration data set. Alternatively, modeling
approaches described in Section 3.2.2 (modeling) can be used to estimate more spatially or temporally

resolved exposure concentrations when data and resources are available.

Comparison studies have illustrated differences among the methods for producing estimates of

exposure concentrations. For example, Dionisio et al. (2013) simulated PM» s mass concentration,

PM: 5 5, and PM, s—SO.* exposures or exposure concentrations using different methods including a
fixed-site monitor, an AERMOD model, a hybrid model combining regional background estimates with
local contributions by AERMOD, and the SHEDS exposure model. The methods differed more with
respect to modeling spatial variability (as measured by coefficient of variation) compared with temporal
variability, with spatial variability being greater for the AERMOD and hybrid approaches for all three
pollutants. Temporal variability was similar across methods for PMs s and SO4? with some difference

across methods for EC. Mannshardt et al. (2013} compared use of fixed-site monitor concentration data,

exposure concentrations estimated by CMAQ output, and exposures calculated using SHEDS to study
respiratory emergency department visits associated with PM s exposure in New York County, NY,
Queens, NY, and Bronx, NY. They found that the use of the SHEDS model led to a very similar relative
risk as using CMAQ but provided additional information that helped reduce uncertainty. The effect
estimates associated with exposure modeled by SHEDS and exposure concentration modeled by CMAQ
were both higher and more precise than the effect estimate obtained from using fixed-site data as an

estimate for exposure concentration. However, Mcguinn et al. (2017) estimated PM, 5 exposure

concentration and risks of coronary artery discase and myocardial infarction using a fixed-site monitor,
CMAQ run with a census tract-level downscaler and with data fusion at 12 km resolution, and a satellite
at 1 km and 10 km resolution. They did not find a relationship of model resolution with exposure
concentration or with the magnitude of the effect estimates or with precision of the effect estimate for

either health outcome studied.

Additional studies have also explored the effect of using different spatial averaging techniques to

handle exposure concentration estimates from fixed-site monitoring data. Goldman et al. (2012) and
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